مقایسه خواص مغناطیسی، اپتیکی و ریخت شناسی نانو کامپوزیت گرافن اکساید احیاشده با پوشش فریت روی سنتز شده به روش تک مرحله ای هیدروترمال و دو مرحله ای سل-ژل/هیدروترمال

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، گروه فیزیک، دانشگاه پیام نور، تهران، ایران

2 کارشناس ارشد، گروه فیزیک، دانشگاه پیام نور، تهران، ایران

چکیده

نانوکامپوزیت گرافن اکساید احیاشده با پوشش فریت روی (ZnFe2O4@rGO) با موفقیت بوسیله روش تک مرحله ‌ای HT و روش دومرحله‌ای SG/HT برای اولین بار سنتز گردید. نتایج حاصل از تصاویر SEM و TEM نشان دادند صفحه های گرافن اکساید ناشی از سنتزهای HT و SG/HT به ترتیب ابعادی در بازه‌های µm 0.3-0.04 و µm 0.7-0.07 دارند و همچنین پوشش نانو ذرات ZnFe2O4 را روی این صفحه های گرافن اکسایدی نشان دادند. با توجه به این تصاویر اندازه نانو ذرات ZnFe2O4 روی صفحه های گرافن اکساید برای سنتزهای HT و SG/HT به ترتیب در بازه‌های nm 10-40 و nm 25-70 مشاهده گردید. . از مقایسه مقادیر بدست آمده برای شکاف انرژی نمونه‌ها مشخص می شود مقدار شکاف انرژی در سنتز SG/HT حدود 7 درصد کمتر از سنتز HT است. نسبت ID/IG با توجه به طیف رامان مقدار 0.88 بدست آمد که بیانگر سنتز باکیفیت گرافن اکساید است. نتایج حاصل از طیف FTIR، احیا موثر GO و همچنین شکل‌گیری کامپوزیت بین صفحه‌های rGO و نانوذرات ZnFe2O4 را برای هر دو روش سنتزSG/HT و HT اثبات کرد. نتایج بدست آمده از بررسی خاصیت مغناطیسی VSM و آهنربا با شدت T 1، خاصیت سوپرپارامغناطیسی هر دو نمونه را اثبات کرد. با توجه به نتایج بدست آمده از این تحقیق می توان گفت برای کاربردهای درمانی به روش فوتوترمال روش تک مرحله‌ای HT، و برای کاربردهای فوتوکاتالیستی و عامل کنتراست در MRI که خاصیت فوتوکاتالیستی و مغناطیسی بالاتر مدنظر باشد روش دو مرحله‌ای SG/HT می‌تواند انتخاب مناسبتری باشد.

کلیدواژه‌ها


[1] S. Korkmaz, İ.A. Kariper, Graphene and graphene oxide based aerogels: Synthesis, characteristics and supercapacitor applications, Journal of Energy Storage, 27 (2020) 101038.
[2] Ö. Güler, N. Bağcı, A short review on mechanical properties of graphene reinforced metal matrix composites, Journal of Materials Research and Technology, In Press (2020)
[3] C.H.A. Tsang, H. Huang, J. Xuan, H. Wang, D.Y.C. Leung, Graphene materials in green energy applications: Recent development and future perspective, Renewable and Sustainable Energy Reviews, 120 (2020) 109656.
[4] M. Yang, Y. Liu, T. Fan, D. Zhang, Metal-graphene interfaces in epitaxial and bulk systems: A review, Progress in Materials Science, 110 (2020) 100652.
[5] K.C. Wasalathilake, H. Li, L. Xu, C. Yan, Recent advances in graphene based materials as anode materials in sodium-ion batteries, Journal of Energy Chemistry, 42 (2020) 91-107.
[6] M. Tabandeh-Khorshid, K. Ajay, E. Omrani, C. Kim, P. Rohatgi, Synthesis, characterization, and properties of graphene reinforced metal-matrix nanocomposites, Composites Part B: Engineering, 183 (2020) 107664.
[7] H. Chi, K. Murali, T. Li, S. Thomas, Recent advances in graphene based photoresponsive materials, Progress in Natural Science: Materials International, 29 (2019) 603-611.
[8] A. Elreedy, M. Fujii, M. Koyama, K. Nakasaki, A. Tawfik, Enhanced fermentative hydrogen production from industrial wastewater using mixed culture bacteria incorporated with iron, nickel, and zinc-based nanoparticles, Water research, 151 (2019) 349-361.
[9] S.S. Latthe, R.S. Sutar, V.S. Kodag, A.K. Bhosale, A.M. Kumar, K. Kumar Sadasivuni, R. Xing, S. Liu, Self – cleaning superhydrophobic coatings: Potential industrial applications, Progress in Organic Coatings, 128 (2019) 52-58.
[10] H. Qiu, M. Ye, Q. Zeng, W. Li, J. Fortner, L. Liu, L. Yang, Fabrication of agricultural waste supported UiO-66 nanoparticles with high utilization in phosphate removal from water, Chemical Engineering Journal, 360 (2019) 621-630.
[11] X. He, H. Deng, H.-m. Hwang, The current application of nanotechnology in food and agriculture, Journal of Food and Drug Analysis, 27 (2019) 1-21.
[12] N. Jafarzadeh, M. Nadafan, R. Malekfar, A. Shakeri-Zadeh, A. Meidanchi, S. Eynali, Structural, optical and dielectric studies of Ag nanoparticles decorated by herceptin, Physica E: Low-dimensional Systems and Nanostructures, 114 (2019) 113562.
[13] A. Meidanchi, A. Jafari, Synthesis and characterization of high purity Ta2O5 nanoparticles by laser ablation and its antibacterial properties, Optics & Laser Technology, 111 (2019) 89-94.
[14] J. Kim, H.Y. Kim, S.Y. Song, S.-h. Go, H.S. Sohn, S. Baik, M. Soh, K. Kim, D. Kim, H.-C. Kim, N. Lee, B.-S. Kim, T. Hyeon, Synergistic Oxygen Generation and Reactive Oxygen Species Scavenging by Manganese Ferrite/Ceria Co-decorated Nanoparticles for Rheumatoid Arthritis Treatment, ACS Nano, 13 (2019) 3206-3217.
[15] K. Vamvakidis, S. Mourdikoudis, A. Makridis, E. Paulidou, M. Angelakeris, C. Dendrinou-Samara, Magnetic hyperthermia efficiency and MRI contrast sensitivity of colloidal soft/hard ferrite nanoclusters, Journal of Colloid and Interface Science, 511 (2018) 101-109.
[16] M. Amiri, K. Eskandari, M. Salavati-Niasari, Magnetically retrievable ferrite nanoparticles in the catalysis application, Advances in Colloid and Interface Science, 271 (2019) 101982.
[17] M. Amiri, M. Salavati-Niasari, A. Akbari, Magnetic nanocarriers: Evolution of spinel ferrites for medical applications, Advances in Colloid and Interface Science, 265 (2019) 29-44.
[18] E. Umut, M. Coşkun, F. Pineider, D. Berti, H. Güngüneş, Nickel ferrite nanoparticles for simultaneous use in magnetic resonance imaging and magnetic fluid hyperthermia, Journal of Colloid and Interface Science, 550 (2019) 199-209.
[19] M. Albino, E. Fantechi, C. Innocenti, A. López-Ortega, V. Bonanni, G. Campo, F. Pineider, M. Gurioli, P. Arosio, T. Orlando, G. Bertoni, C. de Julián Fernández, A. Lascialfari, C. Sangregorio, Role of Zn2+ Substitution on the Magnetic, Hyperthermic, and Relaxometric Properties of Cobalt Ferrite Nanoparticles, The Journal of Physical Chemistry C, 123 (2019) 6148-6157.
[20] X. Hao, B. Wang, C. Ma, F. Liu, X. Yang, T. Liu, X. Liang, C. Yang, H. Zhu, G. Lu, Mixed potential type sensor based on stabilized zirconia and Co1-xZnx Fe2O4 sensing electrode for detection of acetone, Sensors and Actuators B: Chemical, 255 (2018) 1173-1181.
[21] M.I.A. Abdel Maksoud, G.S. El-Sayyad, A.H. Ashour, A.I. El-Batal, M.S. Abd-Elmonem, H.A.M. Hendawy, E.K. Abdel-Khalek, S. Labib, E. Abdeltwab, M.M. El-Okr, Synthesis and characterization of metals-substituted cobalt ferrite [Mx Co(1-x) Fe2O4; (M = Zn, Cu and Mn; x = 0 and 0.5)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples, Materials Science and Engineering: C, 92 (2018) 644-656.
[22] N. Hamdaoui, Y. Azizian-Kalandaragh, M. Khlifi, L. Beji, Cd-doping effect on morphologic, structural, magnetic and electrical properties of Ni0.6-xCdxMg0.4Fe2O4 spinel ferrite (0 ≤ x ≤ 0.4), Journal of Alloys and Compounds, 8 (2019) 964-970.
[23] K.-T. Chen, H.-Y. Chen, C.-J. Tsai, Mesoporous Sn/Mg doped ZnFe2O4 nanorods as anode with enhanced Li-ion storage properties, Electrochimica Acta, 319 (2019) 577-586.
[24] Z.-S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, H.-M. Cheng, Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance, ACS Nano, 4 (2010) 3187-3194.
[25] K. Zhou, Y. Zhu, X. Yang, C. Li, One-pot preparation of graphene/Fe3O4 composites by a solvothermal reaction, New Journal of Chemistry, 34 (2010) 2950-2955.
[26] S.-M. Paek, E. Yoo, I. Honma, Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure, Nano Letters, 9 (2009) 72-75.
[27] D. Wang, D. Choi, J. Li, Z. Yang, Z. Nie, R. Kou, D. Hu, C. Wang, L.V. Saraf, J. Zhang, I.A. Aksay, J. Liu, Self-Assembled TiO2–Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion, ACS Nano, 3 (2009) 907-914.
[28] H.-P. Cong, J.-J. He, Y. Lu, S.-H. Yu, Water-soluble magnetic-functionalized reduced graphene oxide sheets: in situ synthesis and magnetic resonance imaging applications, Small, 6 (2010) 169-173.
[29] G. Wang, Y. Ma, Z. Wei, M. Qi, Development of multifunctional cobalt ferrite/graphene oxide nanocomposites for magnetic resonance imaging and controlled drug delivery, Chemical Engineering Journal, 289 (2016) 150-160.
[30] N.A. Kumar, H.-J. Choi, Y.R. Shin, D.W. Chang, L. Dai, J.-B. Baek, Polyaniline-Grafted Reduced Graphene Oxide for Efficient Electrochemical Supercapacitors, ACS Nano, 6 (2012) 1715-1723.
[31] Y. Fu, X. Wang, Magnetically Separable ZnFe2O4–Graphene Catalyst and its High Photocatalytic Performance under Visible Light Irradiation, Industrial & Engineering Chemistry Research, 50 (2011) 7210-7218.
[32] W. Hong, L. Li, R. Xue, X. Xu, H. Wang, J. Zhou, H. Zhao, Y. Song, Y. Liu, J. Gao, One-pot hydrothermal synthesis of Zinc ferrite/reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction, Journal of Colloid and Interface Science, 485 (2017) 175-182.
[33] Y. Yang, H. Shi, Y. Wang, B. Shi, L. Guo, D. Wu, S. Yang, H. Wu, Graphene oxide/manganese ferrite nanohybrids for magnetic resonance imaging, photothermal therapy and drug delivery, 30 (2016) 810-822.
[34] Y. Jia, C. Wu, B.W. Lee, C. Liu, S. Kang, T. Lee, Y.C. Park, R. Yoo, W. Lee, Magnetically separable sulfur-doped SnFe2O4/graphene nanohybrids for effective photocatalytic purification of wastewater under visible light, Journal of Hazardous Materials, 338 (2017) 447-457.
[35] S. Qamar, M.N. Akhtar, W. Aleem, Z.u. Rehman, A.H. Khan, A. Ahmad, K.M. Batoo, M. Aamir, Graphene anchored Ce doped spinel ferrites for practical and technological applications, Ceramics International, 46 (2020) 7081-7088.
[36] T. Arun, S.K. Verma, P.K. Panda, R.J. Joseyphus, E. Jha, A. Akbari-Fakhrabadi, P. Sengupta, D.K. Ray, V.S. Benitha, K. Jeyasubramanyan, P.V. Satyam, Facile synthesized novel hybrid graphene oxide/cobalt ferrite magnetic nanoparticles based surface coating material inhibit bacterial secretion pathway for antibacterial effect, Materials Science and Engineering: C, 104 (2019) 109932.
[37] N. Díez, A. Śliwak, S. Gryglewicz, B. Grzyb, G. Gryglewicz, Enhanced reduction of graphene oxide by high-pressure hydrothermal treatment, Rsc Advances, 5 (2015) 81831-81837.
[38] Y. Zhou, Q. Bao, L.A.L. Tang, Y. Zhong, K.P. Loh, Hydrothermal Dehydration for the “Green” Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties, Chemistry of Materials, 21 (2009) 2950-2956.
[39] Y. Fu, H. Chen, X. Sun, X. Wang, Combination of cobalt ferrite and graphene: High-performance and recyclable visible-light photocatalysis, Applied Catalysis B: Environmental, 111-112 (2012) 280-287.
[40] H.-H. Huang, K.K.H. De Silva, G.R.A. Kumara, M. Yoshimura, Structural Evolution of Hydrothermally Derived Reduced Graphene Oxide, Scientific Reports, 8 (2018) 6849.
[41] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45 (2007) 1558-1565.
[42] D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nature nanotechnology, 3 (2008) 101-105.
[43] H. Dang, Y. Qiu, Z. Cheng, W. Yang, H. Wu, H. Fan, X. Dong, Hydrothermal preparation and characterization of nanostructured CNTs/ZnFe2O4 composites for solar water splitting application, Ceramics International, 42 (2016) 10520-10525.
[44] J. Tauc, R. Grigorovici, A. Vancu, Optical Properties and Electronic Structure of Amorphous Germanium, 15 (1966) 627-637.
[45] M. Xu, H. Niu, J. Huang, J. Song, C. Mao, S. Zhang, C. Zhu, C. Chen, Facile synthesis of graphene-like Co3S4 nanosheet/Ag2S nanocomposite with enhanced performance in visible-light photocatalysis, Applied Surface Science, 351 (2015) 374-381.
[46] J. Feng, L. Su, Y. Ma, C. Ren, Q. Guo, X. Chen, CuFe2O4 magnetic nanoparticles: A simple and efficient catalyst for the reduction of nitrophenol, Chemical Engineering Journal, 221 (2013) 16-24.
[47] M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy, Nano Letters, 10 (2010) 751-758.
[48] A.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects, Solid State Communications, 143 (2007) 47-57.
[49] M. Ren, X. Wang, C. Dong, B. Li, Y. Liu, T. Chen, P. Wu, Z. Cheng, X. Liu, Reduction and transformation of fluorinated graphene induced by ultraviolet irradiation, Physical Chemistry Chemical Physics, 17 (2015) 24056-24062.
[50] H.-P. Cong, X.-C. Ren, P. Wang, S.-H. Yu, Macroscopic Multifunctional Graphene-Based Hydrogels and Aerogels by a Metal Ion Induced Self-Assembly Process, ACS Nano, 6 (2012) 2693-2703.
[51] C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing Sugar: New Functional Molecules for the Green Synthesis of Graphene Nanosheets, ACS Nano, 4 (2010) 2429-2437.
[52] P. Laokul, V. Amornkitbamrung, S. Seraphin, S. Maensiri, Characterization and magnetic properties of nanocrystalline CuFe2O4, NiFe2O4, ZnFe2O4 powders prepared by the Aloe vera extract solution, Current Applied Physics, 11 (2011) 101-108.