ارزیابی حضور همزمان رزینهای اپوکسی و پلی استر حاوی نانو ذرات سیلیکا در ساختار پوشش قوطیهای مواد غذایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی شیمی و پلیمر، دانشگاه آزاد اسلامی واحد تهران جنوب، تهران، ایران

2 دانشیار، دانشکده مهندسی شیمی و پلیمر، دانشگاه آزاد اسلامی واحد تهران جنوب، تهران، ایران

3 استاد، دانشکده مهندسی شیمی و پلیمر، دانشگاه آزاد اسلامی واحد تهران جنوب، تهران، ایران

4 دانشیار، مرکز تحقیقات نانو، دانشگاه آزاد اسلامی واحد تهران جنوب، تهران، ایران

5 دانشیار، گروه فرآیند پلیمر، پژوهشگاه پلیمر و پتروشیمی ایران، ، تهران، ایران

amnc.2022.10.39.3

چکیده

رزین اپوکسی به دلیل خواص شیمیایی و مکانیکی مناسب در مقایسه با سایر رزین‌ها یکی از پرکاربرد‌ترین مواد برای پوشش داخلی قوطی‌های مواد‌‌ غذایی بوده است. اخیرا، به دلیل تشدید قوانین زیست محیطی، استفاده از اپوکسی به دلیل مهاجرت مشتقات بیسفنل‌آ به درون مواد غذایی محدود شده است. راهکارهای متفاوتی برای حل این مشکل و جایگزینی آن پیشنهاد گردیده و لیکن تاکنون پاسخ مناسب، فراگیر و جامعی ارایه نشده است. در مطالعه حاضر، بخشی از رزین اپوکسی پوشش قوطی با مقادیر مختلف رتبه غذایی رزین پلی استر جانشین شد و در ساختار فرمولاسیون، مقادیر مختلف نانو ذرات سیلیس بر اساس مدل طراحی آزمون تاگوچی اضافه شد. پوشش‌های فرموله شده در حضور رزین ملامین فرمالدئید پخت شدند. خواص مکانیکی و شیمیایی پوشش‌های پخته شده بر اساس روش‌های استاندارد بررسی شد. مهم‌ترین آزمون ارزیابی پوشش‌های قوطی یعنی آزمایشات مهاجرت عام و مهاجرت ویژه بر روی این پوششها مطابق با استاندارد بین المللی EN1186-EU 10: 2011 انجام شد. تحقیقات سمیت نشان داد که غلظت مواد آزاد شده در شبیه سازهای غذا بر اساس استاندارد فوق در محدوده قابل قبولی بوده است. همچنین، نتایج نشان داد که رزین پلی‌استر می‌تواند یک ساختار مناسب برای افزودن به فرمولاسیون‌های روکش قوطی‌های موادغذایی و جایگزینی با رزین اپوکسی تا حدود 47 درصد باشد و حضور نانو ذرات سیلیس در حدود 0.5 درصد وزنی موجب ایجاد هم‌افزایی در خواص ممانعتی و حفاظتی این پوششها می‌گردد.

کلیدواژه‌ها


 ا[‌]1م.کدیور،‌اصول‌و‌مبانی‌بسته‌بندی‌مواد‌غذایی،دانشگاه‌صنعتی‌اصفهان،‌اصفهان،
چاپ‌هفتم،‌1396
ا[‌]2حقیقت‌پژوه‌مطلق،‌منیژه;‌هماپور،‌مسعود;‌شفیع‌پور،‌محمدرضا‌(اعضای‌شورای
‌برنامه‌ریزی،)‌تولید‌کمپوت‌و‌کنسرو،‌سازمان‌پژوهش‌و‌برنامه‌ریزی‌آموزشی،‌چاپ
1397‌،دوم
[3] R. Coles, MJ. Kirwan Food and beverage packaging
technology. John Wiley & Sons; 2011 Feb 25.
[4] G.K. Deshwal, N.R. Panjagari, Review on metal packaging:
materials, forms, food applications, safety and recyclability, J.
Food Sci. Technol. 57 (2020) 2377–2392. doi:10.1007/s13197-
019-04172-z.
[5] E.F. Rahayu, D.S. Asmorowati, Review of metal corrosion
on food cans, J. Phys. Conf. Ser. (2019). doi:10.1088/1742-
6596/1321/2/022037.
[6] R.J. Footitt, A.S. Lewis, The Canning of Fish and Meat, 1st ed.,
Blackie Academic and Professional, Glasgow, U.K., 1995.
[7] E.M. Munguia-Lopez, E. Peralta, A. Gonzalez-Leon, C.
Vargas-Requena, H. Soto-Valdez, Migration of Bisphenol A (BPA)
from Epoxy Can Coatings to Jalapeno Peppers and an Acid Food
Simulant, J. Agric. Food Chem. 50 (2002) 7299-7302.
ا[ ‌]8ن.‌ پوریا‌ منش،‌ مروری‌ بر‌ پوششهای‌ مخصوص‌ قوطی‌ های‌ کنسرو‌ و‌ نوشیدنی
‌ها‌‌موسسه‌پژوهشی‌علوم‌فناوری‌رنگ‌و‌پوشش‌(‌بسپار،)‌شماره‌،‌165،111-115
اردیبهشت‌1395
[9] K. Weber, V. Wegmann, C. Mayer, M. Hilt, Progress in Organic
Coatings Investigation of the network structure of new bisphenol
A non-intent interior food can coatings using high-resolution solidstate 13 C-NMR spectroscopy, Prog. Org. Coatings. 122 (2018)
154–158. doi: 10.1016/j.porgcoat.2018.05.015.
[10] C. Stärker, F. Welle, Migration of Bisphenol A from Can
Coatings into Beverages at the End of Shelf Life Compared to
Regulated Test Conditions, Beverages. 5 (2019). doi:10.3390/
beverages5010003.
[11] F. Vilarinho, R. Sendón, A. Van Der Kellen, M.F. Vaz, A.S.
Silva, Bisphenol A in food as a result of its migration from food
packaging, Trends Food Sci. Technol. 91 (2019) 33–65. doi:
10.1016/j.tifs.2019.06.012.
[12] K.K. Kuorwel, M.J. Cran, K. Sonneveld, J. Miltz, S.W.
Bigger, Migration of antimicrobial agents from starch-based films
into a food simulant. LWT Food Sci. Technol. 50 (2), 432–438
(2013)
[13] A. Schaefer, S. Maß, T. J. Simat, & H. Steinhart, (2004).
Migration from can coatings: Part 1. A size-exclusion chromatographic method for the simultaneous determination of overall
migration and migrating substances below 1000 Da. Food additives and contaminants, 21(3), 287-301. doi:10.1080/0265203031
0001655498.
[14] J.S. LaKind,” Can coatings for foods and beverages and
options”, issues Int. J. Technology, Policy and Management, 2013
[15] NIEHS (National Institute of Environmental Health Sciences).
Bisphenol A(BPA) 2010.
ا[‌]16ع.‌مصداقی‌نیا،‌ک.‌ندافی،‌م.‌یونسیان،‌م.ص.‌حسوند،‌س.‌فریدی،‌آنچه‌باید‌درباره
‌عوامل‌خطر‌محیطی‌و‌اثرات‌آنها‌بر‌سلامت‌بدانیم،‌پژوهشکده‌محیط‌زیست‌دانشگاه
علوم‌پزشکی‌تهران،‌1395
[17] D.Y. Bang, M. Kyung, M.J. Kim, B.Y. Jung, M.C. Cho, S.M.
Choi, Y.W. Kim, S.K. Lim, D.S. Lim, A.J. Won, S.J. Kwack, Y.
Lee, H.S. Kim, B.M. Lee, Human risk assessment of endocrinedisrupting chemicals derived from plastic food containers, Compr.
Rev. Food Sci. Food Saf. 11 (2012) 453–470.
[18] R. Paseiro-cerrato, S. Macmahon, C.D. Ridge, G.O.
Noonan, T.H. Begley, Identification of unknown compounds from
polyester cans coatings that may potentially migrate into food
or food simulants, J. Chromatogr. A. 1444 (2016) 106–113. doi:
10.1016/j.chroma.2016.03.038.
[19] Breast Cancer Fund (2010) Safer Alternatives to Bisphenol
A (BPA). Available online at: http://www.calwic.org/storage/
documents/state/2010/bpa_alternatives.pdf (2012).
ا[‌]20م.‌حاجی‌محمودی،‌ز.‌مرادی،‌م.‌‌شمس‌اردکانی،‌‌بررسی‌کیفیت‌پوشش‌داخلی‌قوطی‌های
مورد‌استفاده‌در‌بسته‌بندی‌مواد‌غذایی‌بیست‌و‌یکمین‌کنگره‌ملی‌علوم‌و‌صنایع‌غذایی،‌1392
[21] E. Pietropaolo, R. Albenga, F. Gosetti, V. Toson, S. Koster,
M. Marin-Kuan, J. Veyrand, A. Patin, B. Schilter, A. Pistone, L.
Tei, Synthesis, identification and quantification of oligomers from
polyester coatings for metal packaging, J. Chromatogr. A. 1578
(2018) 15–27. doi: 10.1016/j.chroma.2018.10.002.
[22] N.A. Apanovich, E.Y. Maksimova, A.D. Zelenskaya, V.
Alekseenko, A. V Pavlov, D.D. Kapitonov, Features of Polyester
Resins in Terms of Their Use for Varnishing Canning Containers,
with Improved Stamping Resistance, Egypt. J. Chem. 33 (2019)
23–33. doi:10.21608/EJCHEM.2019.18286.2122.
[23] R. Send, J. Bustos, M.I. Santillana, GC-MS Screening for the
Identification of Potential Migrants Present in Polymeric Coatings
of Food Cans, Polymers (Basel). 11 (2019) 2086. doi:10.3390/
polym11122086.
[24] Code of Federal Regulations, 21CFR175.300 Indirect Food
Additives: Adhesives and Components of Coatings. Subpart C—
Substances for Use as Components of Coatings, Resinous and
Polymeric Coatings; Food and Drug Administration, Washington,
DC, USA: 2019., (n.d.).
[25] H. Ong, H. Samsudin, H. Soto-valdez, Migration of endocrinedisrupting chemicals into food from plastic packaging materials:
an overview of chemical risk assessment, techniques to monitor
migration, and international regulations, Crit. Rev. Food Sci. Nutr.
(2020) 1–23. doi:10.1080/10408398.2020.1830747.
[26] K.-Z. Chin, S. Chang, SiO2-Coated Molecularly Imprinted
Copolymer Nanostructures for the Adsorption of Bisphenol A, ACS
Appl. Nano Mater. 1 (2019) 89–99. doi:10.1021/acsanm.8b01706.
[27] S. D. F. Mihindukulasuriya, & L. T. Lim, Nanotechnology
development in food packaging: A review. Trends in Food Science
& Technology, 40, 149-167(2014)
[28] A. Störmer, J. Bott, D. Kemmer, & R. Franz. Critical review
of the migration potential of nanoparticles in food contact plastics.
Trends in Food Science & Technology, 63, 39–50(2017)
[29] Y. Echegoyen, C. Nerin. Nanoparticle release from nanosilver
  antimicrobial food containers. Food and Chemical Toxicology 62:
16-22. (2013)
[30] A. Hartwig, M. Sebald, D. Pütz, & L. Aberle, (2005, January).
Preparation, characterisation and properties of nanocomposites
based on epoxy resins–An overview. In Macromolecular symposia
(Vol. 221, No. 1, pp. 127-136). Weinheim: WILEY‐VCH Verlag.
doi:10.1002/masy.200550313.
[31] F. Jafari-soghieh, E. Pajoohi-alamooti, H. Behniafar,
Bisphenol A Diglycidyl Ether-Based Epoxy Networks with
Enhanced Storage Moduli Using Silica Nanoparticles Coated by
NH2-Functionalized Poly (tetramethylene oxide), Polym. Sci. Ser.
A. 61 (2019) 1–9. doi:10.1134/S0965545X19030155.
ا[‌]32استاندارد‌ملی‌ایران‌‌‌2509تجدیدنظر‌دوم‌‌،1393بسته‌بندی،‌پوشش‌های‌آلی‌مورد‌مصرف
در‌بسته‌بندی‌فلزی،‌روش‌های‌آزمون
http://standard.isiri.gov.ir/StandardView.aspx?Id=41693
[33] M. Joulazadeh, A.H. Navarchian, Effect of process variables
on mechanical properties of polyurethane / clay nanocomposites,
Polym. Adv. Technol. 21 (2010) 263–271. doi:10.1002/pat.1424.
[34] N. Amini, M. Kalaee, Morphological optimization of
electrospun polyacrylamide / MWCNTs nanocomposite nanofibers
using Taguchi’ s experimental design, Int. J. Adv. Manuf. Technol.
69 (2013) 139–146. doi:10.1007/s00170-013-5006-x.
[35] Standard test methods for Specification for Tin Mill Products,
General Requirement, ASTM A623M-10
,2010.
[36] Standard test methods for Standard Test Methods
for Determination of Nickel, Vanadium, Iron, and Sodium in
Crude Oils and Residual Fuels by Flame Atomic Absorption
Spectrometry, ASTM D5863, 2016.
[37] European Commission (EC) 2011. Commission Regulation
(EU) No 10/2011 of 14 January 2011 on Plastic Materials and
Articles İntended to Come into Contact with Food
[38] European Union Packaging Directive (94/62/EC, Article
11) EUROPEAN PARLIAMENT AND COUNCIL DIRECTIVE
94/62/EC of 20 December 1994 on packaging and packaging waste
h t t p s : / / e u r- l e x . e u r o p a . e u / L e x U r i S e r v / L e x U r i S e r v.
do?uri=CELEX:31994L0062:EN:HTML
[39] S.K. Sahoo, S. Mohanty, S.K. Nayak, Synthesis and
characterization of bio-based epoxy blends from renewable
resource based epoxidized soybean oil as reactive diluent, Chinese
J. Polym. Sci. 33 (2014) 137–152. Doi: 10.1007/s10118-015-1568-
4.
[40] M. A. Alam, Samad, U. A. Sherif, E. S. M. Poulose, A. M.
Mohammed, J. A. Alharthi. & S. M. Al-Zahrani, (2020). Influence of SiO2 content and exposure periods on the anticorrosion
behavior of epoxy nanocomposite coatings. Coatings, 10(2), 118.
doi: 10.3390/coatings10020118.
[41] R. Khan, M.R. Azhar, A. Anis, M.A. Alam, Facile synthesis
of epoxy nanocomposite coatings using inorganic nanoparticles for
enhanced thermo-mechanical properties: a comparative study, J.
Coatings Technol. Res. 13 (2016) 159–169. Doi: 10.1007/s11998-
015-9736-6.
[42] H. Abdollahi, Salimi, A. Barikani, M. Samadi,
A. Hosseini Rad, S. & A. R. Zanjanijam, Systematic investigation of mechanical properties and fracture toughness of epoxy
networks: Role of the polyetheramine structural parameters.
Journal of Applied Polymer Science, 136(9), (2019), 47121. DOI:
10.1002/app.4712
[43] G.Z. Xiao, M. Delamar, M.E.R. Shanahan, Irreversible
Interactions Between Water and DGEBA / DDA Epoxy Resin
During Hygrothermal Aging, Appl. Polym. Sci. 65 (1998) 449–
458.
[44] S.M. Cakić, I.S. Ristić, V.M. Jašo, R.Ž. Radičević, O.Z. Ilić,
J.K.B. Simendić, Investigation of the curing kinetics of alkydmelamine-epoxy resin system, Prog. Org. Coatings. 73 (2012)
415–424. doi: 10.1016/j.porgcoat.2011.03.016.
[45] A. Salmasifar, A. A. Sarabi, & H. Eivaz
Mohammadloo,Anticorrosive performance of epoxy/clay
nanocomposites pretreated by hexafluorozirconic acid-based
conversion coating on St12. Corrosion Engineering, Science and
Technology, 50(5) (2015), 372-379. https://doi.org/10.1179/17432
78214Y.0000000233.
[46] B. Toirac, Garcia-Casas, A. Cifuentes, S. C. AguileraCorrea, J. J. Esteban, J. Mediero, & A. Jiménez-A. Morales,
Electrochemical characterization of coatings for local prevention
of Candida infections on titanium-based biomaterials. Progress in
Organic Coatings, (2020), 146, 105681. https://doi.org/10.1016/j.
porgcoat.2020.105681
[47] M. Ramezanzadeh, B. Ramezanzadeh, G. Bahlakeh,
A. Tati, & M. Mahdavian, (2021). Development of an
active/barrier bi-functional anti-corrosion system based on
the epoxy nanocomposite loaded with highly-coordinated
functionalized zirconium-based nanoporous metal-organic framework (Zr-MOF). Chemical Engineering Journal, 408, 127361.
https://doi.org/10.1016/j.cej.2020.127361
[48] S. GilakHakimabadi, M. Ehsani, H.A. Khonakdar,
M. Ghaffari, S.H. Jafari, Controlled-release of ferulic acid from
active packaging based on LDPE/EVA blend: Experimental and
modeling, Food Packag. Shelf Life. 22 (2019) 100392.
[49] C. M. Hansen, solubility parameters: a user’s handbook. CRC
press (2007).
[50] B. Stojanović, L. Radović, D. Natić, M. Dodevska, G.
Vraštanović‐Pavičević, M. Balaban, Z. Stojanović, V. Antić,
Migration of bisphenol a into food simulants and meat rations
during initial time of storage, Packag. Technol. Sci. 33 (2020)
75–82.