سنتز و بررسی تاثیر نوع پیش ماده بر خصوصیات ساختاری هماتیت با استفاده از لایه نشانی شیمیایی بخار برای کاربردهای فوتوالکتروشیمیایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، گروه فیزیک، دانشکده علوم پایه، دانشگاه مازندران، بابلسر، ایران

2 استادیار، گروه نانوزیست فناوری، دانشکده زیست فناوری، دانشگاه تخصصی فناوریهای نوین، آمل، ایران

3 دکترا، گروه فیزیک، دانشکده علوم پایه، دانشگاه مازندران، بابلسر، ایران

amnc.2022.10.39.6

چکیده

فناوری فوتوکاتالیستی شکافتگی آب یکی از روش‌های نوینی است که از پتانسیل بالایی برای تولید هیدروژن برخوردار است. در این کار پژوهشی روش لایه نشانی شیمیایی بخار برای سنتز هماتیت بر بستر FTO، به عنوان فوتوآند سلول فوتوالکتروشیمیایی به کار گرفته شد. برای تعیین نوع ساختار و بررسی مورفولوژی ساختارهای سنتز شده از طیف پراش پرتو ایکس، میکروسکوپ الکترونی روبشی و طیف سنجی پراش انرژی پرتو ایکس استفاده شد که به خوبی سنتز اکسید آهن گونه هماتیت را بر بستر FTO تایید کردند. در مرحله سنتز هماتیت مشخص شد که مراحل پیش شستشو، حضور ماده TEOS و مقدار آن، در یکنواختی و ضخامت لایه‌نشانی و نوع پیش ماده‌ی آهنی مورد استفاده درنوع ساختار و مورفولوژی هماتیت سنتز شده بر FTO ، تاثیر بسزایی دارند. با استفاده از فروسن ساختارهای هرمی شکل هماتیت با ضخامت بهینه با مقدار 2 میلی لیتر TEOS بدست آمد و برای پنتاکربونیل آهن ساختارهای گل کلمی شکل در نسبت بهینه پنتاکربونیل آهن (ml 1) به TEOS (ml 5/0) 2: 1 حاصل شد. نتایج بررسی کارآرایی فوتوآندی هماتیت سنتز شده بر بستر FTO مشخص که مقدار ضخامت هماتیت سنتز شده و نوع مورفولوژی ساختار هماتیت نقش ویژه‌ای در میزان جریان فوتونی دارند و ماکزیمم چگالی جریان فوتونی برای ساختارگل کلمی شکل هماتیت سنتز شده mA/cm2 42/1 بدست آمد.

کلیدواژه‌ها


 [1] B. Eftekharnia, “Enhancement of optical absorption in metal
oxide nanostructures using plasmonic arrays for photoelectron
chemical splitting of water, “Tarbiat Modares University, Iran,
2016.
[2] Z.Khakpour, H.Pourfarahani, A.Maghsoudipour, T.Ebadzadeh,
“Synthesis and deposition of hematite nanoparticles on Fluorinedoped Tin Oxide (FTO) glass substrates”. 5(2018), 15828-15835.
[3] Dinghua Zhou, Ke Fan, “Recent strategies to enhance the
efficiency of hematite photoanodes in photoelectrochemical water
splitting”. Chinese Journal of Catalysis. 42(2021), 904-919.
[4] Li, Yan, Qiong Mei, Zejun Liu, Xingsheng Hu, Zhaohui Zhou,
Jingwei Huang, Bo Bai, Hui Liu, Fei Ding, and Qizhao Wang.
“Fluorine-doped iron oxyhydroxide cocatalyst: promotion on the
WO3 photoanode conducted photoelectrochemical water splitting.” Applied Catalysis B: Environmental. 304 (2022), 120995.
[5] Coelho, Dyovani, Joao Pedro RS Gaudencio, Saulo A.
Carminati, Francisco WP Ribeiro, Ana F. Nogueira, and Lucia H.
Mascaro. “Bi electrodeposition on WO3 photoanode to improve
the photoactivity of the WO3/BiVO4 heterostructure to water
splitting.” Chemical Engineering Journal. 399(2020), 125836.
[6] Eftekharinia, Behrooz, Ahmad Moshaii, Ali Dabirian, and
Nader Sobhkhiz Vayghan. “Optimization of charge transport
in a Co–Pi modified hematite thin film produced by scalable
electron beam evaporation for photoelectrochemical water oxidation.” Journal of Materials Chemistry A. 5 (2017), 3412-3424.
[7] Yang, Fan, Adam C. Nielander, Ronald L. Grimm, and Nathan
S. Lewis. “Photoelectrochemical behavior of n-type GaAs (100)
electrodes coated by a single layer of graphene.” The Journal of
Physical Chemistry C, vol. 120, no. 13,
[8] Eftekharinia, Behrooz, Nader Sobhkhiz Vayghan, Ali
Esfandiar, and Ali Dabirian. “Effect of film morphology on
water oxidation enhancement in NiFeCo modified hematite photoanodes.” Surface and Coatings Technology. 421(2016), 6989-6995.
[9] Ai, Minhua, Xidi Li, Lun Pan, Xiaoting Xu, Jin Yang, JiJun Zou, and Xiangwen Zhang. “Surface states modulation of
hematite photoanodes for enhancing photoelectrochemical
catalysis.” Chemical Engineering Science. (2021), 117397.
[10] Wang, Yujie, Mingyue Rong, Jiandong Zheng, and
Zebao Rui. “Morphology control of the hematite photoanodes for
photoelectrochemical water splitting.” International Journal of
Hydrogen Energy. 45(2020), 31667-31677.
[11] Shim, Sang Gi, Jeiwan Tan, Hyungsoo Lee, Jaemin Park,
Juwon Yun, Young Sun Park, Kyungmin Kim, Jeongyoub
Lee, and Jooho Moon. “Facile morphology control strategy to
enhance charge separation efficiency of Mo: BiVO4 photoanodes
for efficient photoelectrochemical water splitting.” Chemical
Engineering Journal. 430(2022), 133061.
[12] Archana, T., K. Vijayakumar, M. Arivanandhan, and
R. Jayavel. “TiO2 nanostructures with controlled morphology
for improved electrical properties of photoanodes and quantum
  dot sensitized solar cell characteristics.” Surfaces and Interfaces.
17(2019),100350.
[13] Lv, Xiaoxin, Shan Shao, Ying Xiao, and Jiujun Deng.
“One-step in-situ formation of TiO2 nanosheets interconnected
hematite photoanode for enhanced water oxidation.” Applied
Surface Science. 560(2021), 150036.
[14] Zhang, Hemin, Woo Yeong Noh, Feng Li, Jin Hyun Kim, Hu
Young Jeong, and Jae Sung Lee. “Three Birds, One‐Stone Strategy
for Hybrid Microwave Synthesis of Ta and Sn Codoped Fe
2O3@
FeTaO
4 Nanorods for Photo‐Electrochemical Water Oxidation.”
Advanced Functional Materials. 29(2019), 1805737.
[15] Zhou, Tingsheng, Lei Li, Jinhua Li, Jiachen Wang, Jing Bai,
Ligang Xia, Qunjie Xu, and Baoxue Zhou. “Electrochemically reduced TiO
2 photoanode coupled with oxygen vacancy-rich carbon
quantum dots for synergistically improving photoelectrochemical
performance.” Chemical Engineering Journal. 425(2021), 131770.
ا[ ]16م. ماکنعلی، ر. اژئیان، بررسی پارامترهای موثر برچگالی نانو لوله های کربنی
مجله علمی پژوهشی مواد پیشرفته و پوشش های ،
CVDعمودی سنتز شده به روش
463-473 ،7 )1392(،.نوین
[17] Demirci, Selim, and Cevat Sarıoğlu. “Fast and low-cost
fabrication of 1D hematite photoanode in pure water vapor and air
atmosphere: Investigation the effect of the oxidation atmosphere on
the PEC performance of the hematite photoanodes.” international
journal of hydrogen energy.42 (2017),11139-11149.
[18] Bai, Shouli, Ke Tian, Jonathan Chenhui Meng, Yingying
Zhao, Jianhua Sun, Kewei Zhang, Yongjun Feng, Ruixian Luo,
Dianqing Li, and Aifan Chen. “Reduced graphene oxide decorated
SnO2/BiVO4 photoanode for photoelectrochemical watersplitting.” Journal of Alloys and Compounds. 855(2021), 156780.
[19] K. X. Wang, Z. Yu, V. Liu, M. L. Brongersma, T. F. Jaramillo, and S. Fan, “Nearly total solar absorption in ultrathin
nanostructured iron oxide for efficient photoelectrochemical water
splitting,” ACS Photonics. 1(2014), 235-240.
[20] R. Gardner, F. Sweett, and D. Tanner, “The electrical
properties of alpha ferric oxide—II.: Ferric oxide of high purity,”
Journal of Physics and Chemistry of Solids. 24(1963), 1183-11187.
ا[ ]21غ. حیدری، رسوب دهی الکتروشیمیایی هماتیت و بررسی خواص فتوالکتروشیمیایی
آن جهت فرایند تجزیه آب و تولید هیدروژن، فصلنامه علمی- پژوهشی فرآیندهای نوین
.در مهندسی مواد، (10