ساخت و مشخصه یابی نانوکریستالهای مس آنتیمونی سولفید ( CuSbS2 )به روش تزریق داغ و بررسی اثر نوع پیش ساز سولفوری

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی پلیمر و رنگ، دانشگاه صنعتی امیرکبیر، تهران، ایران دانشیار، پژوهشکده رنگ و پلیمر، دانشگاه صنعتی امیرکبیر، تهران، ایران

2 دانشیار، پژوهشکده رنگ و پلیمر، دانشگاه صنعتی امیرکبیر، تهران، ایران

3 دانشجوی دکتری، پژوهشکده رنگ و پلیمر، دانشگاه صنعتی امیرکبیر، تهران، ایران

4 استاد، دانشکده شیمی و علم مواد، دانشگاه آلتو، اسپو، فنلاند

چکیده

در این مقاله نانوکریستال های کالکوستیبایت (CuSbS2) به روش تزریق داغ سنتز شدند. در این تحقیق اثر نوع پیش ساز سولفوری بر ساختار کریستالی و ریزساختار ذرات تهایی مورد
بررسی قرار گرفت. دو نوع پیش ساز پودر سولفور(S) و تیواوریا (TU) استفاده شدند و ذرات حاصل با استفاده از آزمون های پراش اشعه ایکس ، میکروسکوپ الکترونی روبشی ، اسپکتروسکوپی ماورا بنفش-مریی و محاسبه شکاف انرژی مورد بررسی قرار گرفتند. نتایج نشان داد که ذرات CuSbSبا استفاده از پیش سازS دارای خلوص بالا و ریزساختار یکنواخت است. همچنین اندازه شکاف انرژی برای این پودر حدود 49 / 1 و 42 / 1 الکترون-ولت به ترتیب برای مقدار مستقیم و غیرمستقیم است. اختلاف کم بین دو مقدار مستقیم و غیرمستقیم تایید کرد که این ماده دارای هر دو نوع شکاف انرژی است.

کلیدواژه‌ها

موضوعات


[1] B. Chen, S. Chang, D. Li, L. Chen, Y. Wang, T. Chen, B. Zou, H. Zhong, A.L. Rogach, Template Synthesis of CuInS2 Nanocrystals from In2S3 Nanoplates and Their Application as Counter Electrodes in Dye-Sensitized Solar Cells, Chemistry of Materials 27(17) (2015) 5949-5956.

[2] علی امیری زرندی، علی اصغر صباغ الوانی، رضا سلیمی، حسن سامعی، شیما موسی خانی، ارزیابی تأثیر اصلاح کننده سطح تیولی بر خواص نوری نقاط کوانتومی سولفید روی سنتز شده در دمای بالا, مواد پیشرفته و پوشش ها نوین 4(16) (1395) 1169-1178.

[3] K. Ramasamy, H. Sims, W.H. Butler, A. Gupta, Mono-, Few-, and Multiple Layers of Copper Antimony Sulfide (CuSbS2): A Ternary Layered Sulfide, Journal of the American Chemical Society 136(4) (2014) 1587-1598.

[4] W.-S. Choi, H. Cui, S.-H. Park, Sung O. Cho, June K. Lee, Tae S. Kim, Jung H. Song, T. Jeong, Characterization of flexible InGaN LEDs with various curvatures, Materials Letters 165(Supplement C) (2016) 252-256.

[5] D. Wang, C. Wang, F.P. Garcia de Arquer, J. Zhong, L. Qian, L. Fang, P. Liu, Y. Pang, M. Liu, M. Liu, G. Zheng, D. Sinton, E.H. Sargent, H. Yang, B. Zhang, Band-aligned C3N4-xS3x/2 stabilizes CdS/CuInGaS2 photocathodes for efficient water reduction, Journal of Materials Chemistry A 5(7) (2017) 3167-3171.

[6] S.A. Pawar, D.S. Patil, H.R. Jung, J.Y. Park, S.S. Mali, C.K. Hong, J.-C. Shin, P.S. Patil, J.-H. Kim, Quantum dot sensitized solar cell based on TiO2/CdS/CdSe/ZnS heterostructure, Electrochimica Acta 203(Supplement C) (2016) 74-83.

[7] H. Limborco, P.M.P. Salome, J.P. Teixeira, D.G. Stroppa, R.R. Andrade, N. Nicoara, K. Abderrafi, J.P. Leitao, J.C. Gonzalez, S. Sadewasser, Synthesis and formation mechanism of CuInSe2 nanowires by one-step self-catalysed evaporation growth, CrystEngComm 18(37) (2016) 7147-7153.

[8] C. Coughlan, K.M. Ryan, Complete study of the composition and shape evolution in the synthesis of Cu2ZnSnS4 (CZTS) semiconductor nanocrystals, CrystEngComm 17(36) (2015) 6914-6922.

[9] J.H. Wernick, K.E. Benson, New semiconducting ternary compounds, Journal of Physics and Chemistry of Solids 3(1) (1957) 157-159.

[10] S. Ikeda, S. Sogawa, Y. Tokai, W. Septina, T. Harada, M. Matsumura, Selective production of CuSbS2, Cu3SbS3, and Cu3SbS4 nanoparticles using a hot injection protocol, RSC Advances 4(77) (2014) 40969-40972.

[11] K. Ramasamy, B. Tien, P.S. Archana, A. Gupta, Copper antimony sulfide (CuSbS2) mesocrystals: A potential counter electrode material for dye-sensitized solar cells, Materials Letters 124(Supplement C) (2014) 227-230.

[12] B. Yang, L. Wang, J. Han, Y. Zhou, H. Song, S. Chen, J. Zhong, L. Lv, D. Niu, J. Tang, CuSbS2 as a Promising Earth-Abundant Photovoltaic Absorber Material: A Combined Theoretical and Experimental Study, Chemistry of Materials 26(10) (2014) 3135-3143.

[13] J. Zhou, G.-Q. Bian, Q.-Y. Zhu, Y. Zhang, C.-Y. Li, J. Dai, Solvothermal crystal growth of CuSbQ2 (Q=S, Se) and the correlation between macroscopic morphology and microscopic structure, Journal of Solid State Chemistry 182(2) (2009) 259-264.

[14] S.K. Verma, R. Verma, Y. Xie, D. Xiong, W. Chen, C. Hu, T.A. Emmanuel, M. Wang, X. Zhao, Heat-up and gram-scale synthesis of Cu-poor CZTS nanocrystals with controllable compositions and shapes, CrystEngComm 19(15) (2017) 2013-2020.