یک روش جدید برای ارزیابی تراکم گره خوردگی های زنجیری در پلی اتیلن با وزن مولکولی بسیار بالا( UHMWPE)و نانو کامپوزیت آن با گرافن

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشیار، دانشگاه صنعتی سهند تبریز، دانشکده مهندسی پلیمر

چکیده

بررسی دانسیته گره خوردگی زنجیره ها در پلیمرها از روشهای متعددی همچون بررسی افزایش مدول در آزمون رئومتری و رزونانس مغناطیسی هسته در حالت جامدانجام شده است. در این مطالعه، روش جدیدی برای ارزیابی گره خوردگی ها در پلی اتیلن با وزن مولکولی بالابا استفاده از آنالیز دینامیکی مکانیکی حرارتی پیشنهاد شده است. آزمون های DMTA بر روی فیلم ها و نوارهای کشیده ساخته شده از UHMWPE و نانوکامپوزیت های UHMWPE حاوی نانو صفحات گرافنانجام شده است. در این مطالعه رابطه بین دمای انتقال α و گره خوردگی زنجیره ها بررسی شده است. نتایج DMTA تایید می کند که با افزایش محتوای گره خوردگی ها، حرکت زنجیره ها محدود شدهو دمای انتقال α به دماهای بالاتر منتقل می شود. همچنین دیده شد که نوارهای کشیده شده پلیمر خالص و نانو کامپوزیت به دلیل تمایل زنجیره های UHMWPE برای بازگشت به حالت کلافی،افزایش مدول را با افزایش دما در DMTA نشان می دهد

کلیدواژه‌ها

موضوعات


[1]          Y Men, J Rieger, H-F Endeler, D Lilge (2003) Mechanical α-process in polyethylene. Macromolecules 36: 4689.
[2]          RH Boyd (1985) Relaxation processes in crystalline polymers: molecular interpretation---a review. Polymer 26: 1123.
[3]          IM Ward, DW Hadley (1993) An introduction to the mechanical properties of solid polymers. John Wiley & Sons., USA
[4]          K Nitta, H., A Tanaka (2001) Dynamic mechanical properties of metallocene catalyzed linear polyethylenes. Polymer 42: 1219.
[5]          T Kajiyama, T Okada, A Sakoda, M Takayanagi (1973) Analysis of the α-relaxation process of bulk crystallized polyethylene based on that of single crystal mat. J. Macromol. Sci. Ph. 7: 583.
[6]          M Takayanagi, T Kajiyama (1973) Structural factors in deformation of crystalline polymers. J. Macromol. Sci. Ph. 8: 1.
[7]          V Hronský, J Murín, J Uhrin (2006) Dynamic-mechanical and nuclear magnetic resonance study of relaxation processes in ultra-high molecular weight polyethylene fibres. Czechoslovak Journal of Physics 56: 289.
[8]          S Talebi, R Duchateau, S Rastogi, J Kaschta, GWM Peters, PJ Lemstra (2010) Molar mass and molecular weight distribution determination of UHMWPE synthesized using a living homogeneous catalyst. Macromolecules 43: 2780.
[9]          S Talebi (2008) Disentangled polyethylene with sharp molar mass distribution; Implications for sintering. Technische Universiteit Eindhoven, Eindhoven, The Netherlands
[10]       P Smith, PJ Lemstra (1980) Ultra-high-strength polyethylene filaments by solution spinning/drawing. J. Mater. Sci 15: 505.
[11]       P Smith, PJ Lemstra (1980) Ultra-drawing of high molecular weight polyethylene cast from solution. Colloid. Polym. Sci. 258: 891.
[12]       P Smith, HD Chanzy, BP Rotzinger (1987) Drawing of virgin ultrahigh molecular weight polyethylene: an alternative route to high strength/high modulus materials. J. Mater. Sci 22: 523.
[13]       S Rastogi, Y Yao, S Ronca, J Bos, J van der Eem (2011) Unprecedented high-modulus high-strength tapes and films of ultrahigh molecular weight polyethylene via solvent-free route. Macromolecules 44: 5558.
[14]       S Rastogi, AB Spoelstra, JGP Goossens, PJ Lemstra (1997) Chain mobility in polymer systems: on the borderline between solid and melt. 1. Lamellar doubling during annealing of polyethylene. Macromolecules 30: 7880.
[15]       DR Lippits, S Rastogi, S Talebi, C Bailly (2006) Formation of entanglements in initially disentangled polymer melts. Macromolecules 39: 8882.
[16]       DR Lippits, S Rastogi, GnWH Hأ¶hne, B Mezari, PCMM Magusin (2007) Heterogeneous distribution of entanglements in the polymer melt and its influence on crystallization. Macromolecules 40: 1004.
[17]       YF Yao, R Graf, HW Spiess, S Rastogi (2008) Restricted segmental mobility can facilitate medium-range chain diffusion: A NMR study of morphological influence on chain dynamics of polyethylene. Macromolecules 41: 2514.
[18]       S Rastogi, Y Yao, DR Lippits, GWH Hhne, R Graf, HW Spiess, PJ Lemstra (2009) Segmental Mobility in the Non-crystalline Regions of Semicrystalline Polymers and its Implications on Melting. Macromol. Rapid Commun. 30: 826.
[19]       S Ronca, G Forte, H Tjaden, Y Yao, S Rastogi (2012) Tailoring molecular structure via nanoparticles for solvent-free processing of ultra-high molecular weight polyethylene composites. Polymer 53: 2897.
[20]       S Rastogi, DR Lippits, GWM Peters, R Graf, Y Yao, HW Spiess (2005) Heterogeneity in polymer melts from melting of polymer crystals. Nature materials 4: 635.
[21]       Q Zhang, DR Lippits, S Rastogi (2006) Dispersion and rheological aspects of SWNTs in ultrahigh molecular weight polyethylene. Macromolecules 39: 658.
[22]       M Sturzel, A Kurek, M Anselm, T Halbach, R Mulhaupt (2013) Springer Berlin Heidelberg,
[23]       M Sturzel, F Kempe, Y Thomann, S Mark, M Enders, R Mulhaupt (2012) Novel graphene UHMWPE nanocomposites prepared by polymerization filling using single-site catalysts supported on functionalized graphene nanosheet dispersions. Macromolecules 45: 6878.
[24]       H Wu, C Lu, W Zhang, X Zhang (2013) Preparation of low-density polyethylene/low-temperature expandable graphite composites with high thermal conductivity by an in situ expansion melt blending process. Mater. Des. 52: 621.
[25]       M Shafiee, A Ramazani Sa (2014) Optimization of UHMWPE/Graphene Nanocomposite Processing Using Ziegler-Natta Catalytic System via Response Surface Methodology. Polym. Plast. Technol. Eng.
[26]       S Xu, X Tangpong (2013) Tribological behavior of polyethylene-based nanocomposites. J. Mater. Sci 48: 578.
[27]       W Li, T Chen, C Guan, D Gong, J Mu, Z-r Chen, Q Zhou (2015) Influence of polyhedral oligomeric silsesquioxane structure on the disentangled state of ultrahigh molecular weight polyethylene nanocomposites during ethylene in situ polymerization. Ind. Eng. Chem. Res. 54: 1478.
[28]       W Li, C Guan, J Xu, J Mu, D Gong, Z-r Chen, Q Zhou (2014) Disentangled UHMWPE/POSS nanocomposites prepared by ethylene in situ polymerization. Polymer 55: 1792.
[29]       W Li, H Yang, J Zhang, J Mu, D Gong, X Wang (2016) Immobilization of isolated FI catalyst on polyhedral oligomeric silsesquioxane-functionalized silica for the synthesis of weakly entangled polyethylene. Chem. Commun. 52: 11092.
[30]       S Ravanbakhsh, M Rezaei, N Sheikh, A Heidari (2010) Irradiation grafting of methyl methacrylate monomer onto ultra-high-molecular-weight polyethylene: An experimental design approach for improving adhesion to bone cement. J. Appl. Polym. Sci. 116: 886.
[31]       LH Sperling (2005) Introduction to physical polymer science. John Wiley & Sons,
[32]       J Brandrup, EH Immergut, EA Grulke, A Abe, DR Bloch (1989) Polymer handbook. Wiley New York
[33]       GR Strobl, GR Strobl (1997) The physics of polymers. Springer,
[34]       A Einstein (1906) Eine neue bestimmung der moleküldimensionen. Ann. Phys-Berlin 324: 289.
[35]       S Mueller, EW Llewellin, HM Mader (2009) Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering SciencesThe Royal Society,
[36]       DR Lippits, S Rastogi, GWH Höhne, B Mezari, PCMM Magusin (2007) Heterogeneous distribution of entanglements in the polymer melt and its influence on crystallization. Macromolecules 40: 1004.
[37]       R Furuyama, J Saito, S Ishii, H Makio, M Mitani, H Tanaka, T Fujita (2005) Fluorinated bis (phenoxy-imine) Ti complexes with MAO: Remarkable catalysts for living ethylene and syndioselective living propylene polymerization. J. Organomet. Chem. 690: 4398.
[38]       M Mitani, T Nakano, T Fujita (2003) Unprecedented living olefin polymerization derived from an attractive interaction between a ligand and a growing polymer chain. Chem. Eur. J. 9: 2396.
[39]       J Saito, Y Suzuki, H Makio, H Tanaka, M Onda, T Fujita (2006) Polymerization of Higher α-Olefins with a Bis (Phenoxyimine) Ti Complex/i-Bu3Al/Ph3CB (C6F5) 4: Formation of Stereo-and Regioirregular High Molecular Weight Polymers with High Efficiency. Macromolecules 39: 4023.