بررسی ساز و کار سنتز و زینتر پودر پیزوالکتریک نایوبات پتاسیم سدیم (KNN )کلسینه شده در دماهای بالا و پایین

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی مواد، دانشکده فنی مهندسی، دانشگاه آی تالله حائری میبد، یزد

2 پژوهشکدۀ سرامیک، پژوهشگاه مواد و انرژی، کرج، البرز

چکیده

سرامیک نایوبات پتاسیم سدیم که از این پس با نام اختصاری KNN شناخته میشود، یک ترکیب پیزوالکتریک بدون سرب است که به دلیل خواص الکترومکانیکی خوبی که دارد، مورد توجه قرار گرفته است. دمای سنتز حالت جامد پودر KNN عموماً در محدودۀ 750-950ºC قرار دارد. در این پژوهش، بررسی شد که آیا می توان دمای کلسیناسیون پودر KNN را همچنان پایینتر آورد یا خیر و اینکه زینترپذیری و خواص سرامیک زینترشده از این پودر دما-پایین تاچه میزان قابل مقایسه با پودر دما-بالا است؟ بر اساس نتیجۀ آنالیز حرارتی STA از مخلوط پیش ماده های فاز KNN ، مشخص شد که محدودۀ دمای 550±50˚C برای سنتز دما-پایین پودر KNN میتواند مورد بررسی دقیقتر قرار بگیرد. بررسیهای بیشتر با استفاده از تکنیک پراش اشعۀ X نشان داد که پودرهای دوبار کلسینه شده در دمای 550˚C فاقد فازهای ثانویه یا مواد اولیۀ باقی مانده به ویژه Nb2O5 هستند. دانسیتۀ نمونه های دو ساعت زینترشده از پودرهای KNN کلسینه شده در دمای بالا ( 850˚C ) و دمای پایین ( 550˚C ) برابر 0/ 94 % دانسیتۀ تئوری انداز هگیری شد. مشخص شد فازهای ثانویه ای که امکان تشکیل آنها در این سیستم وجود دارد، فازهای پلی نایوباتی هستند که به دلیل تبخیر عناصر قلیایی و به ویژه پتاسیم در دماهای بالا در هر دو نوع سرامیک زینترشده از پودرهای دما-بالا و دما-پایین تشکیل می شوند. ضریب بار پیزوالکتریسیته، پلاریزاسیون اشباع و باقی ماندۀ سرامیک زینترشده از پودر سنتزشده در دمای پایین به ترتیب برابر 30/4 μC/cm2 ،97 pC/N و 24/7 μC/cm2 انداز هگیری شد که قابل مقایسه و حتی در مواردی بالاتر از مقادیر اندازه گیری شده برای سرامیک زینترشده از پودر سنتزشده در دمای بالا )به ترتیب برابر 99 pC/N ، 29/4 μC/cm2 و 23/5 μC/cm2  )می باشد. نتایج این پژوهش نشان می دهد که بدون ترس از تحت تأثیر قرار گرفتن خواص نهایی قطعه، امکان کاهش دمای سنتز حالت جامد پودر سرامیک KNN تا دمای 550˚C وجود دارد

کلیدواژه‌ها

موضوعات


1.             Jaffe B, Cook WR, Jaffe H. Piezoelectric ceramics. New York: Academic Press; 1971.

2.             Haertling GH. Ferroelectric ceramics: History and technology. Journal of the American Ceramic Society 1999; 82(4): 797-818, doi: 10.1111/j.1151-2916.1999.tb01840.x.

3.             Kosec M, Malič B, Wolny W, James A, Alemany C, Pardo L. Effect of a chemically aggressive environment on the electromechanical behaviour of modified lead titanate ceramics. Journal of the Korean Physical Society 1998; 32: S1163-S1166, doi:

4.             Eveloy V, Ganesan S, Fukuda Y, Ji W, Pecht MG. Are you ready for lead-free electronics? IEEE Transactions on Components and Packaging Technologies 2005; 28(4): 884-894, doi: 10.1109/TCAPT.2005.859353.

5.             Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M. Lead-free piezoceramics. Nature 2004; 432(7013): 84-87, doi: 10.1038/nature03028.

6.             Marandian Hagh N, Jadidian B, Safari A. Property-processing relationship in lead-free (K,Na,Li)NbO3-solid solution system. Journal of Electroceramics 2007; 18(3-4): 339-346, doi: 10.1007/s10832-007-9171-x.

7.             Rubio-Marcos F, Romero JJ, Martín-Gonzalez MS, Fernández JF. Effect of stoichiometry and milling processes in the synthesis and the piezoelectric properties of modified KNN nanoparticles by solid state reaction. Journal of the European Ceramic Society 2010; 30(13): 2763-2771, doi: 10.1016/j.jeurceramsoc.2010.05.027.

8.             Chowdhury A, Bould J, Londesborough MGS, Milne SJ. Fundamental issues in the synthesis of ferroelectric Na0.5K0.5NbO3 thin films by sol−gel processing. Chemistry of Materials 2010; 22(13): 3862-3874, doi: 10.1021/cm903697j.

9.             Hao J, Xu Z, Chu R, Zhang Y, Chen Q, Fu P, Li W, Li G, Yin Q. Characterization of (K0.5Na0.5)NbO3 powders and ceramics prepared by a novel hybrid method of sol–gel and ultrasonic atomization. Materials & Design 2010; 31(6): 3146-3150, doi: 10.1016/j.matdes.2009.12.015.

10.           Liu N, Wang K, Li J-F, Liu Z. Hydrothermal synthesis and spark plasma sintering of (K, Na)NbO3 lead-free piezoceramics. Journal of the American Ceramic Society 2009; 92(8): 1884-1887, doi: 10.1111/j.1551-2916.2009.03126.x.

11.           Zhang M, Guo M, Zhou Y. Low-temperature preparation of KxNa(1−x)NbO3 lead-free piezoelectric powders by microwave-hydrothermal synthesis. International Journal of Applied Ceramic Technology 2011; 8(3): 591-596, doi: 10.1111/j.1744-7402.2009.02464.x.

12.           Feizpour M, Barzegar Bafrooei H, Hayati R, Ebadzadeh T. Microwave-assisted synthesis and sintering of potassium sodium niobate lead-free piezoelectric ceramics. Ceramics International 2014; 40(1, Part A): 871-877, doi: 10.1016/j.ceramint.2013.06.081.

13.           Rojac T, Benčan A, Uršič H, Malič B, Kosec M. Synthesis of a Li- and Ta-modified (K,Na)NbO3 solid solution by mechanochemical activation. Journal of the American Ceramic Society 2008; 91(11): 3789-3791, doi: 10.1111/j.1551-2916.2008.02714.x.

14.           Zhu J, Li Z, Xu Z, Yao X. Mechanochemical synthesis of KxNa1-xNbO3 powders. Ferroelectrics 2010; 401(1): 211-217, doi: 10.1080/00150191003676959.

15.           Pan Z, Chen J, Fan L, Zhang J, Zhang S, Huang Y, Liu L, Fang L, Xing X. Enhanced piezoelectric properties and thermal stability in the (K0.5Na0.5)NbO3:ZnO lead-free piezoelectric composites. Journal of the American Ceramic Society 2015; 98(12): 3935-3941, doi: 10.1111/jace.13831.

16.           Zhao Y, Zhao Y, Huang R, Liu R, Zhou H. Microstructure and piezoelectric properties of CuO-doped 0.95(K0.5Na0.5)NbO3–0.05Li(Nb0.5Sb0.5)O3 lead-free ceramics. Journal of the European Ceramic Society 2011; 31(11): 1939-1944, doi: 10.1016/j.jeurceramsoc.2011.04.018.

17.           Mgbemere HE, Hinterstein M, Schneider GA. Structural phase transitions and electrical properties of (KxNa1−x)NbO3-based ceramics modified with Mn. Journal of the European Ceramic Society 2012; 32(16): 4341-4352, doi: 10.1016/j.jeurceramsoc.2012.07.033.

18.           Bafandeh MR, Gharahkhani R, Lee J-S. Enhanced electric field induced strain in SrTiO3 modified (K,Na)NbO3-based piezoceramics. Journal of Alloys and Compounds 2014; 602: 285-289, doi: 10.1016/j.jallcom.2014.02.185.

19.           Zhang S, Xia R, Hao H, Liu H, Shrout TR. Mitigation of thermal and fatigue behavior in K0.5Na0.5NbO3-based lead free piezoceramics. Applied Physics Letters 2008; 92(15): 152904, doi: 10.1063/1.2908960.

20.           Kim JS, Ahn CW, Lee SY, Ullah A, Kim IW. Effects of LiNbO3 substitution on lead-free (K0.5Na0.5)NbO3 ceramics: Enhanced ferroelectric and electrical properties. Current Applied Physics 2011; 11(3, Supplement): S149-S153, doi: 10.1016/j.cap.2011.03.049.

21.           Saito Y, Takao H. High performance lead-free piezoelectric ceramics in the (K,Na)NbO3-LiTaO3 solid solution system. Ferroelectrics 2006; 338(1): 17-32, doi: 10.1080/00150190600732512.

22.           Palei P, Sonia, Kumar P. Dielectric, ferroelectric and piezoelectric properties of (1−x)[K0.5Na0.5NbO3]−x[LiSbO3] ceramics. Journal of Physics and Chemistry of Solids 2012; 73(7): 827-833, doi: 10.1016/j.jpcs.2012.02.008.

23.           Ahn C-W, Park C-S, Choi C-H, Nahm S, Yoo M-J, Lee H-G, Priya S. Sintering behavior of lead-free (K,Na)NbO3-based piezoelectric ceramics. Journal of the American Ceramic Society 2009; 92(9): 2033-2038, doi: 10.1111/j.1551-2916.2009.03167.x.

24.           Jaeger RE, Egerton L. Hot pressing of potassium-sodium niobates. Journal of the American Ceramic Society 1962; 45(5): 209-213, doi: 10.1111/j.1151-2916.1962.tb11127.x.

25.           Li J-F, Wang K, Zhang B-P, Zhang L-M. Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. Journal of the American Ceramic Society 2006; 89(2): 706-709, doi: 10.1111/j.1551-2916.2005.00743.x.

26.           Bafandeh MR, Gharahkhani R, Lee J-S. Dielectric and piezoelectric properties of sodium potassium niobate-based ceramics sintered in microwave furnace. Materials Chemistry and Physics 2015; 156: 254-260, doi: 10.1016/j.matchemphys.2015.03.018.

27.           Shin D-J, Koh J-H. Effects of calcination temperature on the piezoelectric properties of lead-free Ag doped (Na,K)NbO3–LiTaO3 piezoelectric ceramics. Journal of Alloys and Compounds 2013; 555: 390-394, doi: 10.1016/j.jallcom.2012.11.155.

28.           Haugen AB, Madaro F, Bjørkeng L-P, Grande T, Einarsrud M-A. Sintering of sub-micron K0.5Na0.5NbO3 powders fabricated by spray pyrolysis. Journal of the European Ceramic Society 2015; 35(5): 1449-1457, doi: 10.1016/j.jeurceramsoc.2014.11.011.

29.           فیض‌پور م, برزگر ع, بررسی و توسعۀ پیزوسرامیک های عاری از سرب بر پایۀ نایوبات های قلیایی, پایان‌نامۀ کارشناسی‌ارشد, بخش مهندسی مواد, دانشگاه شیراز, 1388.

30.           Rahaman MN. Ceramic processing and sintering. USA: CRC Press, Taylor & Francis Group; 2003.

31.           Kosec M, Kolar D. On activated sintering and electrical properties of NaKNbO3. Materials Research Bulletin 1975; 10(5): 335-339, doi: 10.1016/0025-5408(75)90002-1.

32.           Ahn ZS, Schulze WA. Conventionally sintered (Na0.5,K0.5)NbO3 with barium additions. Journal of the American Ceramic Society 1987; 70(1): C-18-C-21, doi: 10.1111/j.1151-2916.1987.tb04862.x.

33.           Jenko D, Benčan A, Malič B, Holc J, Kosec M. Electron microscopy studies of potassium sodium niobate ceramics. Microscopy and Microanalysis 2005; 11(6): 572-580, doi: 10.1017/S1431927605050683.

34.           Du H, Li Z, Tang F, Qu S, Pei Z, Zhou W. Preparation and piezoelectric properties of (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics with pressure-less sintering. Materials Science and Engineering: B 2006; 131(1–3): 83-87, doi: 10.1016/j.mseb.2006.03.039.

35.           Wei N, Wang J, Li B, Huan Y, Li L. Improvement of the piezoelectric and ferroelectric properties of (K, Na)0.5NbO3 ceramics via two-step calcination–milling route. Ceramics International 2015; 41(8): 9555-9559, doi: 10.1016/j.ceramint.2015.04.015.

36.           Vendrell X, García JE, Bril X, Ochoa DA, Mestres L, Dezanneau G. Improving the functional properties of (K0.5Na0.5)NbO3 piezoceramics by acceptor doping. Journal of the European Ceramic Society 2015; 35(1): 125-130, doi: 10.1016/j.jeurceramsoc.2014.08.033.

37.           Popovič A, Bencze L, Koruza J, Malič B. Vapour pressure and mixing thermodynamic properties of the KNbO3-NaNbO3 system. RSC Advances 2015; 5(93): 76249-76256, doi: 10.1039/C5RA11874C.

38.           فیض‌پور م, عبادزاده ت. سرامیک پیزوالکتریک بدون سرب نایوبات پتاسیم - سدیم؛ دشواری های فرآیند ساخت و مزیت های نسبی ایران: مطالعۀ موردی ایران و اسلوونی. مواد پیشرفته و پوشش های نوین 1395; 16: 1147-1158.

39.           Malič B, Jenko D, Bernard J, Cilenšek J, Kosec M. Synthesis and sintering of (K,Na)NbO3 based ceramics. MRS Online Proceedings Library 2002; 755: doi: 10.1557/PROC-755-DD4.4.

40.           ACerS-NIST. Phase Equilibria Diagrams, No. 6976. Westerville, OH: CD-ROM Database (Version 3.3) The American Ceramic Society and National Institute of Standards and Technology.

41.           Lide DR. CRC Handbook of chemistry and physics. 84th ed.: CRC Press; 2004.

42.           Malič B, Jenko D, Holc J, Hrovat M, Kosec M. Synthesis of sodium potassium niobate: A diffusion couples study. Journal of the American Ceramic Society 2008; 91(6): 1916-1922, doi: 10.1111/j.1551-2916.2008.02376.x.

43.           Warrington SB, Chapter 6 - Simultaneous thermal analysis techniques, in Principles of thermal analysis and calorimetry, P. J. Haines, Ed., Cambridge, UK: The Royal Society of Chemistry, 2002, pp. 166-189, doi: 10.1039/9781847551764-00166.

44.           Malič B, Kupec A, Kosec M, Chapter 7 - Thermal analysis, in Chemical solution deposition of functional oxide thin films, T. Schneller, R. Waser, M. Kosec, and D. Payne, Eds., Vienna: Springer, 2013, pp. 163-179, doi: 10.1007/978-3-211-99311-8_7.

45.           Jenko D, Sinteza Keramike na Osnovi (K,Na)NbO3 (in English: Synthesis of (K,Na)NbO3 Ceramics), Ph. D. Dissertation, Faculty of Natural Sciences and Engineering, University of Ljubljana, Ljubljana, Slovenia, 2006.

46.           Buscaglia MT, Bassoli M, Buscaglia V, Alessio R. Solid-state synthesis of ultrafine BaTiO3 powders from nanocrystalline BaCO3 and TiO2. Journal of the American Ceramic Society 2005; 88(9): 2374-2379, doi: 10.1111/j.1551-2916.2005.00451.x.

47.           Hollenstein E, Dielectric and Piezoelectric Properties of Potassium Sodium Niobate Ceramics, Ph. D. Dissertation, Ceramics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, 2007.

48.           Irle E, Blachnik R, Gather B. The phase diagrams of Na2O and K2O with Nb2O5 and the ternary system Nb2O5-Na2O-Yb2O3. Thermochimica Acta 1991; 179: 157-169, doi: 10.1016/0040-6031(91)80344-I.

49.           ICDD. PDF-2 2002 (Database). Newtown Square, PA, USA: International Center for Diffraction Data, 2002.

50.           Feizpour M, Ebadzadeh T, Jenko D. Synthesis and characterization of lead-free piezoelectric (K0.50Na0.50)NbO3 powder produced at lower calcination temperatures: A comparative study with a calcination temperature of 850°C. Journal of the European Ceramic Society 2016; 36(7): 1595-1603, doi: http://dx.doi.org/10.1016/j.jeurceramsoc.2016.01.014.

51.           Zhen Y, Li J-F. Normal sintering of (K,Na)NbO3-based ceramics: Influence of sintering temperature on densification, microstructure, and electrical properties. Journal of the American Ceramic Society 2006; 89(12): 3669-3675, doi: 10.1111/j.1551-2916.2006.01313.x.

52.           Zuo R, Rödel J, Chen R, Li L. Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. Journal of the American Ceramic Society 2006; 89(6): 2010-2015, doi: 10.1111/j.1551-2916.2006.00991.x.

53.           Birol H, Damjanovic D, Setter N. Preparation and characterization of (K0.5Na0.5)NbO3 ceramics. Journal of the European Ceramic Society 2006; 26(6): 861-866, doi: 10.1016/j.jeurceramsoc.2004.11.022.

54.           Pavlič J, Optimization of the Processing of Potassium Sodium Niobate Thick Films and Their Electromechanical Behavior, Ph. D Dissertation, Electronic Ceramics Department, Jožef Stefan International Postgraduat School, Ljubljanan, Slovenia, 2014.

55.           Egerton L, Dillon DM. Piezoelectric and dielectric properties of ceramics in the system potassium—sodium niobate. Journal of the American Ceramic Society 1959; 42(9): 438-442, doi: 10.1111/j.1151-2916.1959.tb12971.x.

56.           Fang J, Wang X, Zuo R, Tian Z, Zhong C, Li L. Narrow sintering temperature window for (K, Na)NbO3-based lead-free piezoceramics caused by compositional segregation. Physica Status Solidi (A) 2011; 208(4): 791-794, doi: 10.1002/pssa.201026500.

57.           عبادزاده ت, فیض‌پور م, برزگربفروئی ه, بررسی تاثیر فرآیندهای مختلف تف جوشی بر ریزساختار و خواص الکتریکی سرامیک پیزوالکتریک عاری از سرب نایوبات پتاسیم- سدیم, پژوهشگاه مواد و انرژی1390.

58.           فیض‌پور م, حیاتی ر, برزگر ع, پایدار م, هاشمی ب, عبادزاده ت, بهره‌ور م. سنتز پودر و زینتر سرامیک عاری از سرب نایوبات پتاسیم- سدیم. مواد مهندسی 1389; 2(2): 175-184.

59.           Wang Y, Damjanovic D, Klein N, Hollenstein E, Setter N. Compositional inhomogeneity in Li- and Ta-modified (K, Na)NbO3 ceramics. Journal of the American Ceramic Society 2007; 90(11): 3485-3489, doi: 10.1111/j.1551-2916.2007.01962.x.

60.           Zhang S, Lee HJ, Ma C, Tan X. Sintering effect on microstructure and properties of (K,Na)NbO3 ceramics. Journal of the American Ceramic Society 2011; 94(11): 3659-3665, doi: 10.1111/j.1551-2916.2011.04833.x.

61.           Madaro F, Saeterli R, Tolchard JR, Einarsrud M-A, Holmestad R, Grande T. Molten salt synthesis of K4Nb6O17, K2Nb4O11 and KNb3O8 crystals with needle- or plate-like morphology. CrystEngComm 2011; 13(5): 1304-1313, doi: 10.1039/C0CE00413H.

62.           Priya S, Nahm S. Lead-free piezoelectrics. New York, NY, USA: Springer; 2012.