تولید میکرو صفحه های پلیمری توسط سامانه ریسندگی الکتروسانتریفیوژ

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشکده مهندسی نساجی، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

ذرات پلیمری در حوزه های مختلفی نظیر شیمی، بیولوژی و فیزیک کاربرد دارند و متعاقبا نیاز به پوشش دهی
سطوح مختلف توسط این ذرات برای دستیابی به یک فیلم نازک در بسیاری از کاربرد ها وجود دارد. روش های
متعددی برای تولید میکروذرات تا کنون ارائه شده است؛ اما اکثرا دارای عیوبی از قبیل بازده محصور سازی
پایین یا دشواری در جداسازی ذرات از فاز آبی می باشند. در این مطالعه برای اولین بار سعی بر تولید میکرو ذرات
صفحه ای و ایجاد یک فیلم نازک توسط روش ریسندگی الکتروسانتریفیوژ، به عنوان روشی مقرون به صرفه
با نرخ تولید بالا، گردید. در این مطالعه تاثیر پارامترهایی نظیر غلظت، ولتاژ، نیروی گریز از مرکز بر شکل و ابعاد میکرو
صفحات پلی کاپرولاکتون بررسی گردید. در این راستا غلظت های 3 و 5 درصد وزنی از محلول پلی کاپرولاکتون در حلال
دی کلرومتان مورد استفاده قرار گرفت. محلول ها با غلظت های متفاوت با استفاده از سیستم ریسندگی الکتروسانتریفیوژ
تحت فرایند تولید میکرو - صفحات قرار گرفتند. به منظوربررسی اثر ولتاژ و نیروی گریز از مرکز بر قطر ذرات، تولید ذرات
پلی کاپرولاکتون تحت ولتاژهای 15 kV ، 18 و 21 و سرعت های دورانی 1740 rpm و 3190 انجام گرفت. نتایج نشان
داد که با افزایش غلظت محلول پلیمری، با ثابت بودن ولتاژ و سرعت دورانی، قطر میکرو- صفحات کاهش می یابد.
همچنین با ثابت نگه داشتن غلظت محلول و نیز سرعت دورانی سیستم ریسندگی، افزایش ولتاژ منجر به کاهش قطر
میکرو صفحات شده است. بعلاوه تحت غلظت و ولتاژ ثابت، قطر میکرو-صفحات با افزایش سرعت دورانی و در نتیجه
افزایش نیروی گریز از مرکز، افزایش قابل توجهی می یابد. همچنین با کاهش غلظت محلول پلیمری، حضور قطرات پیرو
افزایش می یابد، که این پدیده منجر به افزایش نایکنواختی قطر میکرو-صفحات می شود.

کلیدواژه‌ها

موضوعات


[1]         M. Sarret, C. Müller, and A. Amell, “Electroless NiP micro- and nano-composite coatings,” Surf. Coatings Technol., vol. 201, no. 1–2, pp. 389–395, 2006.

 

[2]         A. E. Deng, Y., L. Wang, W. Yang, S. Fu, “Preparation of magnetic polymeric particles via inverse microemulsion polymerization process,” J. Magn. Magn. Mater., pp. 69–78, 2003.

 

[3]         C. L. Stayton, Patrick S. Allan S. Hoffman, Mohamed El-Sayed, Samarth Kulkarni, Tsuyoshi Shimoboji, Niren Murthy, Volga Bulmus, “Intelligent biohybrid materials for therapeutic and imaging agent delivery.,” Proc. IEEE, pp. 726–736, 2005.

 

[4]         H.-J. A. Pich, Andrij, Jessica Hain, Yuri Prots, “Composite polymeric particles with ZnS shells,” Polymer (Guildf)., pp. 7931–7944, 2005.

 

[5]         B. Kuriokase, S. Padma, and S. P. Priya, “A Review on Microcapsules,” vol. 9, no. 1, pp. 28–39, 2015.

 

[6]         Y. Wu, S. J. Kennedy, and R. L. Clark, “Polymeric Particle Formation Through Electrospraying at Low Atmospheric Pressure,” pp. 381–387, 2008.

 

[7]         I. D. Rosca, F. Watari, and M. Uo, “Microparticle formation and its mechanism in single and double emulsion solvent evaporation,” J. Control. Release, vol. 99, no. 2, pp. 271–280, 2004.

 

[8]         L. Mu and S. S. Feng, “Fabrication, characterization and in vitro release of paclitaxel (Taxol®) loaded poly (lactic-co-glycolic acid) microspheres prepared by spray drying technique with lipid/cholesterol emulsifiers,” J. Control. Release, vol. 76, no. 3, pp. 239–254, 2001.

 

[9]         C. Berkland, K. K. Kim, and D. W. Pack, “Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions,” J. Control. Release, vol. 73, no. 1, pp. 59–74, 2001.

 

[10]       C. Berkland, M. King, A. Cox, K. K. Kim, and D. W. Pack, “Precise control of PLG microsphere size provides enhanced control of drug release rate,” J. Control. release, vol. 82, no. 1, pp. 137–147, 2002.

 

[11]       G. Ma, M. Nagai, and S. Omi, “Preparation of uniform poly (lactide) microspheres by employing the Shirasu Porous Glass (SPG) emulsification technique,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 153, no. 1, pp. 383–394, 1999.

 

[12]       K. Okuyama and I. W. Lenggoro, “Preparation of nanoparticles via spray route,” Chem. Eng. Sci., vol. 58, no. 3, pp. 537–547, 2003.

 

[13]       C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, “Processing and microstructural characterization of porous biocompatible protein polymer thin films,” Polymer (Guildf)., vol. 40, no. 26, pp. 7397–7407, 1999.

 

[14]       C. Berkland, D. W. Pack, and K. K. Kim, “Controlling surface nano-structure using flow-limited field-injection electrostatic spraying (FFESS) of poly (D, L-lactide-co-glycolide),” Biomaterials, vol. 25, no. 25, pp. 5649–5658, 2004.

 

[15]       I. G. Loscertales, A. Barrero, M. Márquez, R. Spretz, R. Velarde-Ortiz, and G. Larsen, “Electrically forced coaxial nanojets for one-step hollow nanofiber design,” J. Am. Chem. Soc., vol. 126, no. 17, pp. 5376–5377, 2004.

 

[16]       S. N. Jayasinghe, M. J. Edirisinghe, and D. Z. Wang, “Controlled deposition of nanoparticle clusters by electrohydrodynamic atomization,” Nanotechnology, vol. 15, no. 11, p. 1519, 2004.

 

[17]       I. G. Loscertales, A. Barrero, I. Guerrero, R. Cortijo, M. Marquez, and A. M. Ganan-Calvo, “Micro/nano encapsulation via electrified coaxial liquid jets,” Science (80-. )., vol. 295, no. 5560, pp. 1695–1698, 2002.

 

[18]       J. C. Ijsebaert, K. B. Geerse, J. C. M. Marijnissen, J.-W. J. Lammers, and P. Zanen, “Electro-hydrodynamic atomization of drug solutions for inhalation purposes,” J. Appl. Physiol., vol. 91, no. 6, pp. 2735–2741, 2001.

 

[19]       R. P. A. Hartman, D. J. Brunner, D. M. A. Camelot, J. C. M. Marijnissen, and B. Scarlett, “Jet break-up in electrohydrodynamic atomization in the cone-jet mode,” J. Aerosol Sci., vol. 31, no. 1, pp. 65–95, 2000.

 

[20]       Y. Yamashita, F. Ko, A. TANAKA, and H. MIYAKE, “Characteristics of elastomeric nanofiber membranes produced by electrospinning,” J. Text. Eng., vol. 53, no. 4, pp. 137–142, 2007.

 

[21]       S. Paruchuri and M. P. Brenner, “Splitting of a liquid jet,” Phys. Rev. Lett., vol. 98, no. 13, p. 134502, 2007.

 

[22]       G. Kim, Y.-S. Cho, and W. D. Kim, “Stability analysis for multi-jets electrospinning process modified with a cylindrical electrode,” Eur. Polym. J., vol. 42, no. 9, pp. 2031–2038, 2006.

 

[23]       Y. Srivastava, M. Marquez, and T. Thorsen, “Multijet electrospinning of conducting nanofibers from microfluidic manifolds,” J. Appl. Polym. Sci., vol. 106, no. 5, pp. 3171–3178, 2007.

 

[24]       S. A. Theron, A. L. Yarin, E. Zussman, and E. Kroll, “Multiple jets in electrospinning: experiment and modeling,” Polymer (Guildf)., vol. 46, no. 9, pp. 2889–2899, 2005.

 

[25]       W. Tomaszewski and M. Szadkowski, “Investigation of electrospinning with the use of a multi-jet electrospinning head,” Fibres Text. East. Eur., vol. 13, no. 4, p. 22, 2005.

 

[26]       A. Vaseashta, “Controlled formation of multiple Taylor cones in electrospinning process,” Appl. Phys. Lett., vol. 90, no. 9, p. 93115, 2007.

 

[27]       A. Varesano, R. A. Carletto, and G. Mazzuchetti, “Experimental investigations on the multi-jet electrospinning process,” J. Mater. Process. Technol., vol. 209, no. 11, pp. 5178–5185, 2009.

 

[28]       A. Varesano, F. Rombaldoni, G. Mazzuchetti, C. Tonin, and R. Comotto, “Multi‐jet nozzle electrospinning on textile substrates: observations on process and nanofibre mat deposition,” Polym. Int., vol. 59, no. 12, pp. 1606–1615, 2010.

 

[29]       S. Xie and Y. Zeng, “Effects of electric field on multineedle electrospinning: experiment and simulation study,” Ind. Eng. Chem. Res., vol. 51, no. 14, pp. 5336–5345, 2012.

 

[30]       Y. Yamashita, F. Ko, H. Miyake, and A. Higashiyama, “Establishment of nanofiber preparation technique by electrospinning,” 繊維学会誌, vol. 64, no. 1, pp. 24–28, 2008.

 

[31]       A. L. Yarin and E. Zussman, “Upward needleless electrospinning of multiple nanofibers,” Polymer (Guildf)., vol. 45, no. 9, pp. 2977–2980, 2004.

 

[32]       X. Gan, Y. Wu, L. Liu, B. Shen, and W. Hu, “Electroless plating of Cu-Ni-P alloy on PET fabrics and effect of plating parameters on the properties of conductive fabrics,” J. Alloys Compd., vol. 455, no. 1–2, pp. 308–313, 2008.

 

[33]       O. O. Dosunmu, G. G. Chase, W. Kataphinan, and D. H. Reneker, “Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface,” Nanotechnology, vol. 17, no. 4, p. 1123, 2006.

 

[34]       O. Jirsak, P. Sysel, F. Sanetrnik, J. Hruza, and J. Chaloupek, “Polyamic acid nanofibers produced by needleless electrospinning,” J. Nanomater., vol. 2010, p. 49, 2010.

 

[35]       X. Wang, H. Niu, X. Wang, and T. Lin, “Needleless electrospinning of uniform nanofibers using spiral coil spinnerets,” J. Nanomater., vol. 2012, p. 3, 2012.

 

[36]       F. Zhou, R. Gong, and I. Porat, “Polymeric nanofibers via flat spinneret electrospinning,” Polym. Eng. Sci., vol. 49, no. 12, pp. 2475–2481, 2009.

 

[37]       J. S. Varabhas, G. G. Chase, and D. H. Reneker, “Electrospun nanofibers from a porous hollow tube,” Polymer (Guildf)., vol. 49, no. 19, pp. 4226–4229, 2008.

 

[38]       A. Kumar, M. Wei, C. Barry, J. Chen, and J. Mead, “Controlling fiber repulsion in multijet electrospinning for higher throughput,” Macromol. Mater. Eng., vol. 295, no. 8, pp. 701–708, 2010.

 

[39]       F. Dabirian, S. A. Hosseini Ravandi, and A. R. Pishevar, “Investigation of Parameters Affecting PAN Nanofiber Production Using Electrical and Centrifugal Forces as a Novel Method ,” Curr. Nanosci., vol. 6, pp. 545-552, 2010.

 

[40]       A. Valipouri, S. A. H. Ravandi, and A. Pishevar, “A novel method for manufacturing nanofibers,” Fiber Polym., vol. 14, pp. 941-949, 2013.

 

[41]       S. Padron, A. Fuentes, D. Caruntu, and K. Lozano, “Experimental study of nanofiber production through forcespinning,” J. Appl. Phys., vol. 113, no. 2, p. 24318, 2013.

 

[42]       A. Bellofiore, “Experimental and numerical study of liquid jets injected in high-density air crossflow,” Università degli Studi di Napoli Federico II, 2007.

 

[43]       A. Valipouri, S. Abdolkarim, H. Ravandi, A. Pishevar, and E. I. Pa, “Experimental and numerical study on isolated and non-isolated jet behavior through centrifuge spinning system,” Int. J. Multiph. Flow, vol. 69, pp. 93–101, 2015.

[44]       X. Hao, L. Xiaofeng, L. Zhenyu, Z. Yiyang, S. Tiecun, Y. Qingbiao, Ce Wang, and L. Lijuan, "Effects of the electrospray ionization parameters on the formation and morphology of colloidal microspheres of polyacrylonitrile," Journal of applied polymer science, vol. 102, no. 3, pp. 2889-2893, 2006.

 

[45]         J. Gomez-Estaca, M. P. Balaguer, R. Gavara, and P. Hernandez-Munoz, "Formation of zein nanoparticles by electrohydrodynamic atomization: Effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin," Food Hydrocolloids, vol. 28, no. 1, pp. 82-91, 2012.

[46]         A. Mehregan Nikoo, R. Kadkhodaee, B. Ghorani, H. Razzaq, and N. Tucker. "Controlling the morphology and material characteristics of electrospray generated calcium alginate microhydrogels," Journal of microencapsulation, vol. 33, no. 7, pp. 605-612, 2016.

[47]         L. Partridge, D. C. Y. Wong, M. J. H. Simmons, E. I. Părău, and S. P. Decent, "Experimental and theoretical description of the break-up of curved liquid jets in the prilling process," Chemical Engineering Research and Design, vol. 83, no. 11, pp. 1267-1275, 2005.