مطالعه ی تیمارهای آمین ممانعت شده و جاذب فرابنفش جهت حفاظت چوب کبوده در برابر هوازدگی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده ی مرمت دانشگاه هنر اصفهان، اصفهان

2 گروه علوم چوب و کاغذ دانشکده منابع طبیعی دانشگاه تهران، کرج

AMNC.2015.4.13.1

چکیده

تاثیرات فتوشیمیایی ناشی از هوازدگی عامل اصلی تخریب چوب در بسیاری از آثار تاریخی ایران است. از این رو، هوازدگی چوب کبوده(Populus albaL) و تیمار آن با جاذب فرابنفش و امین ممانعت شده در راستای حفاظت آن مورد مطالعه قرار گرفت. نمونه ها به مدت ۳۰۰ و ۸۰۰ ساعت با توجه به استاندارد 99-ASTM2565 حت هوازدگی قرار گرفتند. کاهش جرم نمونه ها محاسبه شد و ارزیابی ها با استفاده از رنگ سنجی، طیف سنجی زیر قرمز- بازتاب کل تضعیف شده تبدیل فوریه و میکروسکوپ الکترونی و باید با این انجام شد. نتایج نشان داد که در نمونه های چوب بدون تیمار، ابتدا لیگنین و سپس درا و این کار را د یده و پس از آن، محصولات تخریب فروشست شده اند. تیمارها تا حد زیادی موجب تند نشر فرایند تخریب شدند ولی تیمار آمین ممانعت شده در مقایسه با جاذب فرابنفش عملکرد بهتری در برابر تخریب فتوشیمیایی داشت و کمتر از سایر نمونه ها دچار تغییرات رنگی گردید.

کلیدواژه‌ها


[1] Williams R, Winandy J, Feist W, Paint Adhesion to Weathered Wood, Journal of Coatings Technology, 59, 1987, 43-49.  
[2] Schnabel T, Zimmer B, Petutschnigg A, On the modeling of colour changes of wood surfaces, European Journal of Wood and Wood Products, 67, 2009, 141–149. 
[3] Gijsman P, New synergists for hindered amine light stabilizers, Polymer, 43(5), 2002, 1573-1579.
[4] Mahltig B, Bottcher H, Rauch K, Dieckmann U, Nitsche R, Fritz T, Optimized UV protecting coatings by combination of organic and inorganic UV absorbers, Thin Solid Films, 485, 2005, 108-114.    
[5] Custodio J, and Eusebio M, Waterborne acrylic varnishes durability on wood surfaces for exterior exposure, Progress in Organic Coatings, 56, 2006, 59–67.  
[6] Schrof W, Beck E, Èniger R, Reich W, Schwalm R, Depth profiling of UV cured coatings containing photostabilizers by confocal Raman microscopy, Progress in Organic Coatings, 35, 1999, 197-204.  
[7] Chang S, and Chou P, Photodiscoloration inhibition of wood coated with UV-curable acrylic clear coatings and its elucidation, Polymer Degradation and Stability, 69, 2000, 355-360. 
[8] Kiguchi M, Evans P, Ekstedt J  , Williams R, Kataoka Y  , Improvement  of  the  durability  of  clear coatings  by  grafting  of UV-absorbers on to wood, Surface Coatings  International Part B: Coatings Transactions, 84(B4), 2001, 243-336.   
[9] Caba K, Guerrero P, Rio M, Mondragon I, Weathering behaviour of wood-faced construction materials, Construction and Building Materials, 21, 2007, 1288–1294.    
[10] Schaller C, and Rogez D, New approaches in wood coating stabilization, Journal of Coatings Technology and Research, 4 (4), 2007, 401–409.   
[11] Chou P, Chang H, Yeh T, Chang S, Characterizing the conservation effect of clear coatings on photodegradation of wood, Bioresource Technology, 99, 2008, 1073–1079.   
[12] Aloui F, Ahajji A, Irmouli Y, George B, Charrier B, Merlin A, Inorganic UV absorbers for the photostabilisation of wood-clear coating systems: Comparison with organic UV absorbers, Applied Surface Science, 253, 2007, 3737–3745.   
[13] Muasher M, and Sain M, The efficacy of photostabilizers on the color change of wood filled plastic composites, Polymer Degradation and Stability, 91, 2006, 1156-1165.     
[14] ICOMOS, Principles for the preservation of historic timber structures, Adopted by ICOMOS at the 12th General Assembly in Mexico, October 1999, http://www.icomos.org/iiwc/charter-eng.htm (accessed in October 12, 2010).  
[15] Standard Practice for Xenon-Arc Exposure of Plastics Intended for Outdoor Applications, Annual Book of ASTM Standard, ASTM Standard, 08.01, D2565 – 99, 2008.
[16] Akhtari M, Investigation of microscopic structure and chemical changes in beech wood during weathering process, Journal of Wood & Forest Science and Technology, 17(3), 2010, 113-124.
[17] Akhtari M, and Arefkhani M, Investigation effect of weathering on acetylated beech wood by FTIR spectroscopy and electron microscopic, Iranian Journal of Wood and Paper Science Research, 25 (1), 2010, 48-61.
[18] Ghorbani Kokandeh M, Akhtari M, Movagharnezhad N, Influence of artificial weathering on acetylated beech solid wood and particleboard by spectroscopy and electron microscopy, Journal of Wood & Forest Science and Technology, 18(4), 2012, 1-14.
[19] Habibzade S, Omidvar A, Farahani M, Mashkour M, Effect of Nano-ZnO on Decay Resistance and Artificial Weathering of Wood Polymer Composite, Journal of Nanomaterials & Molecular Nanotechnology, 3 (3), 2014, doi: http://dx.doi.org/10.4172/2324-8777.1000146
[20] Johnston-Feller R, Color science in the examination of museum objects: nondestructive Procedures, Getty, Los Angeles, 2001, 34-36.
[21] Hon D, Weathering of wood in structural use, 2nd international conference on environmental degradation of engineering materials, 1981, 519–529.
[22] Hon D, Photochemistry of wood, In: Hon D, Shiraishi N (Eds), Wood and cellulosic chemistry, Marcel Dekker, New York, 1991, 525–555.
[23] Pastore T, Kelly O, Rubim J, A spectrocolorimetric study on the effect of ultraviolet irradiation of four tropical hardwoods, Bioresource Technology, 93, 2004, 37-42. 
[24] Pandey K, and Vuorinen T, Comparative study of photodegradation of wood by a UV laser and a xenon light source, Polymer Degradation and Stability, 93, 2008, 2138–2146.
[25] Ksibi M, Amor S, Cherif S, Elaloui E, Houas A, Elaloui M, Photodegradation of lignin from black liquor using a UV/TiO2 system, Journal of Photochemistry and Photobiology A: Chemistry, 154, 2003, 211–218.  
[26] Chang T, Chang H, Wu C, Chang S, Influences of extractives on the photodegradation of wood, Polymer Degradation and Stability, 95, 2010, 516-521.
[27] Kamoun C, Merlin A, Deglise X, Urizar SH, Fernandez A, ESR study of photodegradation of lignins extracted and isolated from Pinus radiata wood, Annals of Forest Science, 56, 1999, 563-578. 
[28] Lebo S, Lonsky W, McDonough T, Medvecz P, Dimmel D, The occurrence and light-induced formation of ortho-quinonoid lignin structures in white spruce refiner mechanical pulp, Journal of Pulp and Paper Science, 16(5), 1990, 139–143.
[29] Hon D, Chang S, Feist W, Participation of Singlet Oxygen in the Photodegradation of wood surfaces. Wood Science and Technology, 16(3), 1982, 193–201.
[30] Gardrat C, Ruggiero R, Hoareau W, Nourmamode A, Grelier S, Siegmund B, Castellan A, Photochemical study of an o-ethyl dibenzodioxocin molecule as a model for the photodegradation of non-phenolic lignin units of lignocellulosics, Journal of Photochemistry and Photobiology A: Chemistry, 167, 2004, 111–120. 
[31] Darabi P, Abdolzadeh H, karimi A, Mirshokraie A, Doosthoseini K, The Investigation of Acetylation and Anti-Oxidant Effect on Weathering of wood Plastic Composites By Means of FTIR and Color Metry (Color measurement), Iranian Journal of Wood and Paper Science Research, 25 (1), 2010, 70-79.
[32] Silverstein R, Webster F, Kiemle D, Spectrometric identification of organic compounds, seventh edition, John Wiley & Sons, New York , 2005, 82-110.  
[33] Mohan S, and Settu K, Vibrational spectra and analysis of 1,2,3-benzotriazole, Indian Journal of Pure & Applied Physics, 31, 1993, 850-854.
[34] Kaci M, and Cimmino S, Crystallinity Measurements of Unstabilized and HALS-stabilized LDPE Films Exposed to Natural Weathering by FT-IR,DSC and WAXS Analyses, International Journal of Polymer Analysis and Characterization, 00, 2000, 1-10.
[35] Kaci M, Sadoun T, Cimmino S, HALS stabilization of LDPE films used in agricultural applications, Macromolecular Materials and Engineering, 278, 2000,  36–42.
[36] Wu Q, Qu B, Xu Y, Wu Q, Surface photo-oxidation and photostabilization of photocross-linked polyethylene, Polymer Degradation and Stability, 68, 2000,  97-102.   
[37] Cristofoli K, Brandalise R, Zeni M, Photostabilized LDPE Films with UV Absorber and HALS as Protection against the Light for Rosé Sparkling Wine, Journal of Food Processing and Technology, 3 (7), 2012, http://dx.doi.org/10.4172/2157-7110.1000166
[38] Chang H, Yeh T, Chang S, Comparisons of chemical characteristic variations for photodegraded softwood and hardwood with/without polyurethane clear coatings, Polymer Degradation and Stability, 77, 2002, 129–135.
[39] Ncube E, Meincken M, Surface characteristics of coated soft- and hardwoods due to UV-B ageing, Applied Surface Science, 256, 2010, 7504–7509.
[40] Hon D, Weathering reactions and protection of wood surfaces, Journal of Applied Polymer Science, 37(1), 1983, 845–864.
[41] Rosu D, Teaca C, Bodirlau R, Rosu L, FTIR and color change of the modified wood as a result of artificial light irradiation, Journal of Photochemistry and Photobiology B: Biology, 99, 2010, 144–149.
[42] Yamauchi S, Sudiyani Y, Imamura Y, Shuichi D, Depth profiling of weathered tropical wood using Fourier transform infrared photoacoustic spectroscopy, Journal of Wood Science, 50, 2004, 433–438. 
[43] Faix O, Fourier transform infrared spectroscopy, In:  Lin S and Dence C (Eds), Methods in Lignin Chemistry, Springer-Verlag, Berlin, 1992, 83-132.
[44] Sudiyani Y, Imamura Y, Shuichi D, Yamauchi S, Infrared spectroscopic investigations of weathering effects on the surface of tropical wood, Journal of Wood Science, 49, 2003, 86–92.
[45] Tolvaj L, Faix O, Artificial ageing of wood monitored by FTIR spectroscopy and CIE colour measurements 1. Effects of UV light, Holzforschung, 49(5), 1995, 397-404.
[46] Anderson L, Pawlak Z, Noell O, Feist W, Infrared Studies of Wood Weathering. Part II: Hardwoods, Applied Spectroscopy, 45 (4), 1991, 648-652.
[47] Schwanninger M, Rodrigues J, Pereira H, Hinterstoisser B, Effects of shorttime vibratory ball milling on the shape of FT-IR spectra of wood and cellulose, Vibrational Spectroscopy, 36, 2004, 23–40.
[48] Horn B, Qiu J, Owen N, Feist W, FT-IR studies of weathering effects in western red cedar and southern pine, Applied Spectroscopy, 48, 1994, 662–668.
[49] Colom X, Carrillo F, Nogues F, Garriga P, Structural analysis of photodegraded wood by means of FTIR spectroscopy, Polymer Degradation and Stability, 80, 2003, 543–549.