اصلاح سطح منسوج بی بافت پلی پروپیلن به کمک پلاسما و آکریلیک اسید و بررسی خواص جذب ماده رنگرزی بازیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی نساجی، واحد بیرجند، دانشگاه آزاد اسلامی، بیرجند، ایران

2 دانشگاه صنعتی امیرکبیر، دانشکده مهندسی نساجی، تهران، ایران

3 دانشگاه صنعتی امیرکبیر، دانشکده شیمی، تهران، ایران

AMNC.2015.4.13.3

چکیده

در این تحقیق، سطح منسوج بی بافت پلی پروپیلنی توسط آکریلیک اسید پیوند زده شد. و برای این منظور، از پلاسمای اکسیژن برای ایجاد رادیکال های آزاد لازم جهت آغاز فرایند پلیمریزاسیون آکریلیک اسید بر سطح الیاف استفاده شد. برای بررسی اتصال آکریلیک اسید به الیاف از آزمون های طیف سنجی مادون قرمز تبدیل فوریه در حالت بازتاب کلی
تضعیف شده، میکروسکوپی الکترونی پویشی نشر میدانی ، میکروسکوپی نیروی اتمی ، طیف سنجی پراش انرژی پرتو ایکس و طیف سنجی فتو الکترونی پرتو ایکس استفاده شد. آزمون های مختلف، پیوندزنی اکریلیک بید به سطح الیاف پلی پروپیلن را مورد تایید قرار دادند. منسوج بود و برای استفاده می شده برای جذب ماده گرزی بازیک از محیط آبی مورد استفاده قرار گرفت و توانایی جد نیة دا ده رنگرزی بازیک آبی متیلن اسیدیته قلیایی را نشان داد (بالای 70 درصد جذب رنگ). ایزوترم فرایند جذب از مدل فرندولیچ و تیک آن از مدل درجه اول پیروی می کند.

کلیدواژه‌ها

موضوعات


[1]  Yan H, Chen Y, Blends of Polypropylene and Hyperbranched Poly(phenylene sulphide) for Production of Dyeable PP Fibres, Iranian Polymer Journal, 19, 2010, 791-799.
[2]  Ghoul YE, Martel B, Achari AE, Campagne C, Razafimahefa L, Vroman I, Improved dyeability of polypropylene fabrics finished with [beta]-cyclodextrin-citric acid polymer, Polymer Journal, 42, 2010, 804-811.
[3]  TehraniBagha AR, Shoushtari AM, Malek RMA, Abdous M, Effect of chemical oxidation treatment on dyeability of polypropylene, Dyes and Pigments, 63,2004, 95-100.
[4]  Shah CD, Jain DK, Dyeing of Modified Polypropylene: Cationic Dyes on Chlorinated Polypropylene, Textile Research Journal, 53, 1983, 274-281.
[5]  Shah CD, Jain DK, Dyeing of modified polypropylene: cationic dyes on brominated polypropylene, Textile Research Journal, 54, 1984, 742-748.
[6]  Yaman N, Özdoǧan E, Seventekin N, Atmospheric plasma treatment of polypropylene fabric for improved dyeability with insoluble textile dyestuff, Fibers and Polymers, 12, 2011, 35-41.
[7]  Yaman N, Ozdogan E, Seventekin N, Ayhan H, Plasma treatment of polypropylene fabric for improved dyeability with soluble textile dyestuff, Applied Surface Science, 255, 2009, 6764-6770.
[8]  Shishoo R, Plasma technologies for textiles, Woodhead Publishing, Cambridge, 2007.
[9]  Conrads H, Schmidt M, Plasma generation and plasma sources, Plasma Sources Science and Technology, 9, 2000, 441-454.
[10]  Wei Q, Wang Y, Hou D, Huang F, Dynamic wetting of plasma-treated polypropylene nonwovens, Journal of Applied Polymer Science, 104, 2007, 2157-2160.
[11]  Masaeli E, Morshed M, Tavanai H, Ashrafizadeh F, Effect of process variables on surface properties of low-pressure plasma treated polypropylene fibers, Fibers and Polymers, 9, 2008, 461-466.
[12]  Kale KH, Palaskar S, Atmospheric Pressure Plasma Polymerisation of Hexamethyldisiloxane for Imparting Water Repellency to Cotton Fabric, Textile Research Journal, 2010, 81, 608-620.
[13]  Yoon YI, Moon HS, Lyoo WS, Lee TS, Park WH, Superhydrophobicity of cellulose triacetate fibrous mats produced by electrospinning and plasma treatment, Carbohydrate Polymers, 75, 2009, 246-250.
[14]  Haji A, Shoushtari AM, Natural antibacterial finishing of wool fiber using plasma technology, Industria Textila, 62, 2011, 244-247.
[15]  Mirjalili M, Karimi L, The impact of nitrogen low temperature plasma treatment upon the physical–chemical properties of polyester fabric, Journal of the Textile Institute, 104, 2012, 98-107.
[16]  Haji A, Mousavi Shoushtari A, Mirafshar M, Natural dyeing and antibacterial activity of atmospheric-plasma-treated nylon 6 fabric, Coloration Technology, 130, 2014, 37-42.
[17]  Lam YL, Kan CW, Yuen CW, Au CH, Low Stress Mechanical Properties of Plasma-Treated Cotton Fabric Subjected to Titanium Dioxide Coating, Textile Research Journal, 2011, 81, 1008-1011.
[18]  Wang C, Wang C, Surface pretreatment of polyester fabric for ink jet printing with radio frequency O2 plasma, Fibers and Polymers, 11, 2010, 223-228.
[19]  Leroux F, Campagne C, Perwuelz A, Gengembre L, Atmospheric air plasma treatment of polyester textile materials. Textile structure influence on surface oxidation and silicon resin adhesion, Surface and Coatings Technology, 203, 2009, 3178-3183.
[20]  Samanta K, Jassal M, Agrawal A, Antistatic effect of atmospheric pressure glow discharge cold plasma treatment on textile substrates, Fibers and Polymers, 11, 2010, 431-437.
[21]  Sadova S, The use of low-temperature plasmas in wool finishing, High Energy Chemistry, 40, 2006, 57-69.
[22]  Lee S, Sarmadi M, Denes F, Shohet J, Surface modification of polypropylene under argon and oxygen-RF-plasma conditions, Plasmas and Polymers, 2, 1997, 177-198.
[23]  López R, Pascual M, García-Sanoguera D, Sánchez-Nacher L, Balart R, Improvement of liquid absorption properties of nonwoven polypropylene substrates by low pressure plasma treatment with CH4-O2 mixture gas, Fibers and Polymers, 13, 2012, 1139-1144.
[24]  Masaeli E, Morshed M, Tavanai H, Study of the wettability properties of polypropylene nonwoven mats by low-pressure oxygen plasma treatment, Surface and Interface Analysis, 39, 2007, 770-774.
[25]  Wang K, Wang W, Yang D, Huo Y, Wang D, Surface modification of polypropylene non-woven fabric using atmospheric nitrogen dielectric barrier discharge plasma, Applied Surface Science, 256, 2010, 6859-6864.
[26]  Shahidi S, Ghoranneviss M, Moazzenchi B, Rashidi A, Dorranian D, Effect of using cold plasma on dyeing properties of polypropylene fabrics, Fibers and Polymers, 8, 2007,123-129.
[27]  Rombolà G, Parisi F, Pavan C, Daprà D, On-line Atmospheric Pressure Plasma (APP) treatment of polypropylene fabrics, Czechoslovak Journal of Physics, 56, 2006, 1021-1028.
[28]  Yaman N, Improvement surface propertiesof polypropylene and polyester fabrics by glow discharge plasma system under atmospheric condition, TEKSTİL ve KONFEKSİYON, 1, 2009, 45-51.
[29]  Lin W, Hsieh Y-L, Ionic absorption of polypropylene functionalized by surface grafting and reactions, Journal of Polymer Science Part A: Polymer Chemistry, 35, 1997, 631-642.
[30]  L. Cernakova DK, A. Zahoranova, M. Cernak, M. Mazur, Surface Modification of Polypropylene Non-Woven Fabrics by Atmospheric-Pressure Plasma Activation Followed by Acrylic Acid Grafting, Plasma Chemistry and Plasma Processing, 25, 2005, 427-437.
[31]  Gupta B, Saxena S, Ray A, Plasma induced graft polymerization of acrylic acid onto polypropylene monofilament, Journal of Applied Polymer Science, 107, 2008, 324-330.
[32]  Saxena S, Ray AR, Gupta B, Graft polymerization of acrylic acid onto polypropylene monofilament by RF plasma, Journal of Applied Polymer Science, 116, 2010, 2884-2892.
[33]  Haji A, Shoushtari AM, Abdouss M, RSM Optimization of Plasma Initiated Grafting of Acrylic Acid onto Polypropylene Nonwoven, Journal of Macromolecular Science, Part A, 51, 2014,76-87.
[34]  Saxena S, Ray AR, Gupta B, Chitosan immobilization on polyacrylic acid grafted polypropylene monofilament, Carbohydrate Polymers, 82, 2010, 1315-1322.
[35]  Wei Q, Wang Y, Wang X, Huang F, Yang S, Surface nanaostructure evolution of functionalized polypropylene fibers, Journal of Applied Polymer Science, 106, 2007, 1243-1247.
[36]  Huang F, Wei Q, Wang X, Xu W, Dynamic contact angles and morphology of PP fibres treated with plasma, Polymer Testing, 25, 2006, 22-27.
[37]  Collaud Coen M, Dietler G, Kasas S, Gröning P, AFM measurements of the topography and the roughness of ECR plasma treated polypropylene, Applied Surface Science, 103, 1996, 27-34.
[38]  Vandenbossche M, Jimenez M, Casetta M, Bellayer S, Beaurain A, Bourbigot S, Chitosan-grafted nonwoven geotextile for heavy metals sorption in sediments, Reactive and Functional Polymers, 73, 2013, 53-59.
[39]  Morent R, De Geyter N, Van Vlierberghe S, Vanderleyden E, Dubruel P, Leys C, Deposition of Polyacrylic Acid Films by Means of an Atmospheric Pressure Dielectric Barrier Discharge, Plasma Chemistry and Plasma Processing, 29, 2009, 103-117.
[40]  Wei Q. Surface characterization of plasma-treated polypropylene fibers, Materials Characterization, 52, 2004, 231-235.
[41]  Morent R, De Geyter N, Trentesaux M, Gengembre L, Dubruel P, Leys C, Stability study of polyacrylic acid films plasma-polymerized on polypropylene substrates at medium pressure, Applied Surface Science, 257, 2010, 372-380.
[42]  Zhang S, Cheng C, Lan Y, Meng Y, A Comparative Study of Hydrophilic Modification of Polypropylene Membranes by Remote and Direct Ar Plasma, Plasma Science and Technology, 11, 2009, 576-581.
[43]  Batmaz R, Mohammed N, Zaman M, Minhas G, Berry R, Tam K, Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes, Cellulose, 21, 2014, 1655-1665
[44] صادقی کیاخانی م، آرامی م، حذف ماده رنگزای بازیک بنفش 16 از پساب رنگی نساجی با استفاده از بیوجاذب پلیمری کیتوسان- اتیل اکریلات، مواد پیشرفته و پوششهای نوین، 1، 1391، 26-15
[45]  Haji A, Mahmoodi NM, Soy meal hull activated carbon: preparation, characterization and dye adsorption properties, Desalination and Water Treatment, 44, 2012, 237-244.
[46] حاجی آقابابائی ل، ابوذری س، بدیعی ع، زرآبادی پور پ, گنجعلی م ر، محمدی زیارانی ق، حذف کارای رنگزای راکتیو سیاه 5 با استفاده ازجاذب نانو متخلخل عامل دار به روش هیدروترمال، مواد پیشرفته و پوش شهای نوین، 5، 1392، 348-337.
[47]  Riquet AM, Rohman G, Guinault A, Demilly M, Surface modification of polypropylene by radiation grafting of hydrophilic monomers: physicochemical properties, Surface Engineering, 27, 2011, 234-241.
[48]  Stawski D, Bellmann C, Electrokinetic properties of polypropylene textile fabrics containing deposited layers of polyelectrolytes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 345, 2009, 191-194.
[49]  Wang Y, Liu Z, Han B, Dong Z, Wang J, Sun D, pH Sensitive polypropylene porous membrane prepared by grafting acrylic acid in supercritical carbon dioxide, Polymer, 45, 2004, 855-860.
[50]  Luo WJ, Gao Q, Wu XL, Zhou CG, Removal of Cationic Dye (Methylene Blue) from Aqueous Solution by Humic Acid-Modified Expanded Perlite: Experiment and Theory, Separation Science and Technology, 49, 2014, 2400-2411.