بهینه سازی ساختاری و بررسی خواص فتوفیزیکی نانو ذرات سلنید نقره

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی پلیمر و رنگ، دانشگاه صنعتی امیر کبیر تهران پژوهشکده رنگ و پلیمر، دانشگاه صنعتی امیر کبیر، تهران

2 دانشکده مهندسی پلیمر و رنگ، دانشگاه صنعتی امیرکبیر تهران پژوهشکده رنگ و پلیمر، دانشگاه صنعتی امیرکبیر، تهران

3 پژوهشکده رنگ و پلیمر، دانشگاه صنعتی امیر کبیر، تهران

4 دانشکده مهندسی پلیمر و رنگ، دانشگاه صنعتی امیر کبیر تهران پژوهشکده رنگ و پلیمر، دانشگاه صنعتی امیر کبیر، تهران

چکیده

در این پژوهش، نقاط کوانتومی سلنید نقره، به روش اتمی سنتز و تاثیر نسبت های واکنشی  مختلف بر روی تشکیل و خلوص قازی ساختار نهایی برررسی گردید. جهت ارزیابی خواص فازی، ریزساختار، فتوفیزیکی و پایداری نانوذرات تهیه شده از آزمون های پراش اشعه ایکس،میکروسکوپ الکترونی روبشی، طیف سنجی تبدیل فوریه مادون قرمز، جذب در ناحیه مرئی -فرابنفش، اسپکتروفتومتری نورتابی و زتا پتانسیل استفانده گردید.آزمون پراش اشعه ایکس تاثیر عامل نسبت واکنشی را بر روی خلوص فاز های تشکیل شده نشان داد . نتایج حاکی از آنست که نانوذرات سلنید نقره به نسبت بهینه نیترات نقره: سلنیوم،1:1.35 به ساختار ارتورومبیک با متوسط اندازه بلورک 6.8 nm می شود. بعلاوه این نمونه دارای ذرات کروی با یکنواختی بالا با شکاف انرژی 2.32ev وپایداری پراکنش خوب در مخلوطی از حلال های سیکلوهگزان و کلروبنزن به نسبت ۲۰:۸۰ است .

کلیدواژه‌ها

موضوعات


[1] Jin Z Zhang, Interfacial Charge Carrier Dynamics of Colloidal Semiconductor Nanoparticles, J.Phys.Chem.B, 104, 2000, 7239-7253.

 [2] Arthur J N, Multiple exciton generation in semiconductor quantum dots, Chemical Physics Letters, 457, 2008, 3-11.

[3] Auttasit T, Kun-Lun W, Hao-Yu T, Ming-Way L, Gou J W, Ag2S quantum dot-sensitized solar cells, Electrochemistry Communications, 12 ,2010, 1158-1160.

[4] Gary H, Comparison of Dye- and Semiconductor-Sensitized Porous Nanocrystalline Liquid Junction Solar Cells, J. Phys. Chem. C, 112, 2008, 17778-17787.

[5]Nikodem T, Dominik J, Mingyong H, G.Julius, Designer polymer-quantum dot architectures, Progress in Polymer Science, 34, 2009, 393-430.

[6]Hailiang W, Limin Q, Controlled Synthesis of Ag2S, Ag2Se, and Ag Nanofibers by Using a General Sacrificial Template and Their Application in Electronic Device Fabrication, Adv. Funct. Mater., 18, 2008, 1249–1256.

[7] Auttasit T, Ming-Way L, Gou J W , Ag2Se quantum dot sensitized solar cells for full solar spectrum light harvesting, Journal of Power Sources, 196, 2011, 6603-6608.

[8]RanC,Yi-PingG,LeiB,Jing-YaZ,Bao-PingQ,Zhi-LingZ,Zhi-XiongX,Dai-WenP, Near-Infrared Electrogenerated Chemiluminescence of Ultrasmall Ag2Se Quantum Dots for the Detection of Dopamine, Anal.Chem., 84, 2012, 8932−8935.

[9] Meng T N, Chris B, Jagadese J V, Shape and size control of Ag2Se nanocrystals from a single precursor [(Ph3P)3Ag2(SeC{O}Ph)2], Chem.Commun.,2005,3820–3822.

[10]Ayaskanta S, Lejun Q,Moon S K, Donna D, David J.N, Facile Synthesis of Silver Chalcogenide (Ag2E;E=Se, S, Te) Semiconductor Nanocrystals, J.Am.Chem.Soc., 133, 2011,6509–6512.

 [11] Chong X, Jie X, Kun L, Jun F, Jinlong Y,Yi X, Superionic Phase Transition in Silver Chalcogenides Nanocrystals Realizing Optimized Thermoelectric Performance, J. Am. Chem. Soc.,134, 2012,4287–4293.

[12] AyaskantaS, AnkurK, DonnaDD, David J N, Quantumconfinementinsilverselenidesemiconductornanocrystals, Chem.Commun., 48, 2012 ,5458–5460.

[13]Byron G,Yiying W,Yadong Y,Peidong Y,Younan X, Single-Crystalline Nanowires of Ag2SeCanBeSynthesizedbyTemplatingagainstNanowiresofTrigonalSe,J.Am.Chem.Soc.,123, 2001, 11500-11501.

[14]Jilian N, Isabel R, Leni C, Elif A, N.Serdar S , Ana Flavia N, The effects of CdSe incorporation into bulk heterojunction solar cells, J.Mater.Chem.,20, 2010, 4845–4853.

[15] V Buschmann, G Van Tendeloo, Ph Monnoyer, J B Nagy, Structural Characterization of Colloidal Ag2Se Nanocrystals, Langmuir, 14, 1998, 1528 1531.

[16] Ze-Da M, Lei Z, Trisha G, Chong-Yeon P, Kefayat U, Vikram N, Won-Chun O, Ag2Se-Graphene/TiO2 Nanocomposites, Sonochemical Synthesis and Enhanced Photocatalytic Properties Under Visible Light, Bull. Korean Chem. Soc, 33, 2012, 3761-3766.

[17] Yvonne J G, David G N, Paul E S, A Amma, T Mallouk, Preparation and synthesis of Ag2Se nanowires produced by template directed synthesis, J.Mater.Chem.,12, 2002,2433–2434.

[18] Choon H B N, Hua T,Wai Y F, Formation of Ag2Se Nanotubes and Dendrite-like Structures from UV Irradiation of a CSe2/Ag Colloidal Solution, J Langmuir, 22, 2006, 9712-9717.

[19] Dingsheng W, Ting X, Qing P, Yadong L, Ag, Ag2S, and Ag2Se Nanocrystals: Synthesis, Assembly, and Construction of Mesoporous Structures, J.Am.Chem.Soc.,130, 2008, 4016-4022.

[20] Shuangfei C, Haohong D, Hongpan R, Dingsheng W, Linsen L, Wei H, Yadong L, Highly Active and Selective Catalysis of Bimetallic Rh3Ni1 Nanoparticles in the Hydrogenation of Nitroarenes, ACS Catal.,3, 2013, 608–612.

[21] Qi Z, Shuangfei C, Linsen L, Yifeng C, Hongpan R, Zhiqiang N, Junjia L, Wei H, Yadong Li, Direct Syntheses of Styryl Ethers from Benzyl Alcohols via Ag Nanoparticle-Catalyzed Tandem Aerobic Oxidation, ACS Catal., 3, 2013, 1681–1684.

[22] Cheng C L, Hua Chun Z, Coordination Chemistry and Antisolvent Strategy to Rare-Earth Solid Solution Colloidal Spheres, J. Am. Chem. Soc.,134, 2012, 19084–19091.

[23] Chun-Nan Z, Peng J, Zhi-Ling Z, Dong-Liang Z, Zhi-Quan T, Dai-Wen P, Ag2Se Quantum Dots with Tunable Emission in the Second Near-Infrared Window, ACS Appl. Mater. Interfaces, 5, 2013, 1186–1189.

[24] Yi-Ping G, Ran C, Zhi-Ling Z, Zhi-Xiong X, Dai-Wen P, Ultrasmall Near-Infrared Ag2Se Quantum Dots with Tunable Fluorescence for in Vivo Imaging, J.Am.Chem.Soc. ,134, 2012, 79−82.

[25] J H Zhan, X G Yang, S D Li, D W Wang, Y Xie, Y T Qian, Synthesis of Ag2Se by sonochemical reaction of Se with AgNO3 in non-aqueous solvent, International Journal of Inorganic Materials , 3, 2001, 47–49.

[26] Sameie H, Salimi R, Sabbagh Alvani A. A, Sarabi A. A, A Nanostructure Phosphor: Effect of Process Parameters on the Photoluminescence Properties for Near-UV WLED Applications, J. Inorg. Organomet. Polym. 22, 2012, 737-743.

[27]Xiaomiao H, Xiaoling Z, Yan F, Shutang C, Na L, Qi Z, Synthesis of SERS active Au nanowires in different noncoordinating solvents, J Nanopart Res,13,2011,2625–2632.

[28] P Capková, M Pospíšil, M Valášková, D Merínská, M Trchová, Z Sedláková, Z Weiss, J Šimoník, Structure of montmorillonite cointercalated with stearic acid and octadecylamine: Modeling, diffraction, IRspectroscopy, Journal of Colloid and Interface Science,300, 2006, 264–269.

[29] Gerasimos K, Edward H S, Nanostructured materials for photon detection, Nature Nanothechnology, 5, 2010, 391-400.

[30] TaucJ, MenthA, States in the gap, J Non-Crystal Solids, 8–10, 1972, 569-85.

[31] Xiaoqi F, Tingshun J, Qian Z, Hengbo Y, Charge-transfer contributions in surface-enhanced Raman scattering from Ag, Ag2S and Ag2Se substrates, J.RamanSpectrosc., 43, 2012, 1191–1195.

[32] BrusLE, A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites, physical chemistry. 79, 1983, 5566.

[33] Sheng-Yi Z, Chun-Xia F, Wei W, Bao-Kang J, Yu-Peng T, Yu-Hua S, Jia-Xiang Y, Hong-Wen G, Synthesis and Electrochemical Behavior of Crystalline Ag2Se Nanotubes, J.Phys.Chem.C, 111, 2007, 4168 4174.

[34] Yan Z, Guosong H, Yejun Z, Guangcun C, Feng L, Hongjie D, Qiangbin W, Ag2S Quantum Dot: A Bright and Biocompatible Fluorescent Nanoprobe in the Second Near-Infrared Window, ACS Nano, 6,2012, 3695–3702.

[35] Cliff R W, Thesis: Multistage Nanoparticle Delivery System for Deep Penetration into Tumor and Electrically controlled Catalytic Nanowire Growth, Massachusetts Institute of Technology, USA, 2011.