تهیه لایه نازک سولفید روی دوپ شده با نقره به روش کندوپاش مغناطیسی فرکانس رادیویی

نوع مقاله: مقاله پژوهشی

چکیده

در این تحقیق، لایه­های نازکی از سولفید روی دوپ شده با نقره (ZnS:Ag) با استفاده از روش کندوپاش مغناطیسی فرکانس رادیویی (RF) بر روی زیرلایه­های شیشه لایه نشانی شدند. برای حصول لایه نازک بهینه، فشارهای کاری مختلف در محدود torr 3-10×5/1 تا torr 1-10×1 مورد بررسی قرار گرفتند. لایه­های نازک بدست آمده با استفاده از پراش پرتوی ایکس (XRD)، میکروسکوپ نیروی اتمی (AFM)، میکروسکوپ الکترونی روبشی (SEM)، طیف سنجی جذب اتمی (AAS) و آنالیز میکروپروب اشعه ایکس (XPMA) مورد شناسایی قرار گرفتند. نتایج نشان داد که فشار کاری torr 2-10×5 بهترین پوشش را از نظر ترکیب شیمیایی و مورفولوژی حاصل می­کند.

کلیدواژه‌ها


[1] Blackmore J, Cullis A, The structure of ZnS thin films deposited by rf magnetron sputtering. Thin Solid Films. 199, 1991, 321-334.

[2] Karar N, Photoluminescence from doped ZnS nanostructures. Solid. State. Commun. 142, 2007, 261-264.

[3] Luo X, Cao W, Zhou L, Synthesis and luminescence properties of (Zn,Cd)S:Ag nanocrystals by hydrothermal method. J. Lumin. 122-123, 2007, 812-815.

[4] Peng W, Qu S, Cong G, Wang Z , Concentration effect of Mn2+ on the photoluminescence of ZnS:Mn nanocrystals. J. Cryst. Growth. 279, 2005, 454-460.

[5] Xian H, Benalloul P, C. Barthou, J. Benoit, Quantitative analyses and crystallographic studies of ZnS: Mn thin films prepared by rf magnetron reactive sputtering. Thin Solid Films. 248, 1994, 193-198.

[6] Matsuoka T,  Kuwata J,  Nishikawa M,  Fujita Y,  Tohda T,  Abe A, A study of the crystallographic and luminescent characteristics of ZnS:Mn films prepared by an rf magnetron sputtering method for AC thin-film electroluminescent devices. Jpn. J. Appl. Phys. 27, 1988, 592-596.  [7] Nitta A, Tanaka K, Maekawa Y, Kusabiraki M, Aozasa M, Effects of gas impurities in the sputtering environment on the stoichiometry and crystallinity of ZnS:Mn electroluminescent-device active layers. Thin Solid Films. 384, 2001, 261-268.

[8] Manzoor K, Vadera S, Kurmar N, Kutty T, Multicolor electroluminescent devices using doped ZnS nanocrystals. Appl. Phys. Lett. 84, 2004, 284-547.

[9] Shin D, Larina L, Yoon K, Ahn B, Fabrication of Cu(In,Ga)Se2 solar cell with ZnS/CdS double layer as an alternative buffer. Curr. Appl. Phys. 10, 2010, S142–S145.

[10] Yamamoto T, Kishimoto S, Iida S, Materials design for p-Type ZnS with blue Ag emission by triple-codoping method. Phys. Stat. Sol. (b) 229, 1, 2002, 371-375.

[11] Hasse M, Qiu J, DePuydt J, Cheng H, Blue‐green laser diodes. Appl. Phys. Lett. 59, 1991, 1272.

[12] Jian w, Zhuang J, Zhang D, Dai J, Yang W, Bai Y, Synthesis of highly luminescent and photostable ZnS:Ag nanocrystals under microwave irradiation. Mater. Chem. Phys. 99, 2006, 494-497.

[13] Ozutok F, Erturk K, Bilgin V, Growth, electrical, and optical study of ZnS:Mn thin films. Acta. Phys. Pol A. 121, 2012.

[14] Tomomura Y, Kitagawa M, Suzuki A, Nakajima S, Homoepitaxial growth of ZnS single crystal thin films by molecular beam epitaxy. J. Cryst. Growth. 99, 1990, 451-454.

[15] Ihanus J, Ritala M, Leskela M, Prohaska T, Resch R, Friedbacher G, Grasserbauer M, AFM studies on ZnS thin films grown by atomic layer epitaxy,  Appl. Surf. Sci. 120, 1997, 43-50.

[16] Subbaiah Y, Prathap P, Reddy K, Structural, electrical and optical properties of ZnS films deposited by close-spaced evaporation. Appl. Surf. Sci. 253, 2006, 2409-2415.

[17] Nadeem M, Ahmed W, Optical properties of ZnS thin films. Turk. J. Phy. 24, 2000, 651 – 659.

[18] Schonbrodt L, Reichelt K, Preparation of  ZnS films by reactive sputtering and their investigation by electron microscopy and Rutherford backscattering, Thin Solid Films. 81, 1981, 45-52.

[19] Kovtyukhova N, Buzaneva E, Waraksa C, Mallouk T, Ultrathin nanoparticle ZnS and ZnS: Mn films: surface sol–gel synthesis, morphology, photophysical properties. Mater. Sci. Eng: B. 69–70, 2000, 411–417.

[20] Fathy N, Ichimura M, Photoelectrical properties of ZnS thin films deposited from aqueous solution using pulsed electrochemical deposition. Sol. Energ. Mater. Sol. Cell. 87, 2005, 747–756.

[21] Gangopadhyay U, Kim K,  Mangalaraj D, Yi J, Low cost CBD ZnS antireflection coating on large area commercial mono-crystalline silicon solar cells. Appl. Surf. Sci. 230, 2004, 364-370.

[22] Goudarzi A, Motedayen Aval G, Sahraei R, Ahmadpoor H, Ammonia-free chemical bath deposition of nanocrystalline ZnS thin film buffer layer for solar cells. Thin Solid Films. 516, 2008, 4953-4957.

 [23] Borah J, Sarma K, Optical and optoelectronic properties of ZnS nanostructured thin film. Acta. Phys. Pol A, 114, 2008, 4.

[24] Ghosh P, Jana S, Nandy S, Chattopadhyay K, Size-dependent optical and dielectric properties of nanocrystalline ZnS thin films synthesized via rf-magnetron sputtering technique. Mater. Res. Bull. 42, 2007, 505–514.

[25] Hua Y, Yu J, Chen R, Chen C, Xu R, Research on ZnS buffer layer by rf magnetron sputtering for Cu(In,Ga)Se2 solar cells. Adv. Mater. Res. 194-196, 2011, 2259-2262.

[26] Gayou V, Salazar-Hernandz B, Constantino M, Rosendo Andres E, Diaz T, Macuil R, Lopez M, Structural studies of ZnS thin films grown on GaAs by rf magnetron sputtering. Vacuum. 84, 2010, 1191-1194.

[27] Zhang R, Wang B, Wei L, Influence of rf power on the structure of ZnS thin films grown by sulfurizing rf sputter deposited ZnO. Mater. Chem. Phys. 112, 2008, 557–561.

[28] Nair P, Justinvictor V, Daniel G, Joy K, Ramakrishnan V, Thomas P, Effect of rf power and sputtering pressure on the structural and optical properties of TiO2 thin films prepared by rf magnetron sputtering. Appl. Surf. Sci. 257, 2011, 10869-10875.

[29] Huang J, Wang L, Tang K, Zhang J, Shi W, Xia Y, Lu X, Growth of ZnS films and application in heterojunction. Adv. Mater. Res. 287-290, 2011, 2140-2143.

[30] Sun L, Hu J, He H, Wu X, Xu X, Lin B, Fu Z, Pan B, Effects of S incorporation on Ag substitutional acceptors in ZnO:(Ag, S) thin films. Solid. State. Commun. 149, 2009, 1663-1665.