ارزیابی اثر ضدخوردگی نانوپیگمنت های پایه رُسی اصلاح شده با ترکیبات آلی آزولی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری ، مهندسی پلیمر ، دانشگاه آزاد اسلامی واحد تهران جنوب

2 دانشگاه آزاد اسلامی واحد تهران جنوب

چکیده

چکیده
در این تحقیق نانوذرات رُس مونت موریلونیت سدیمNa+- MMT)) توسط بازدارنده های خوردگی آزولی نظیر 2ـ مرکاپتو بنزوتی آزول (MBT) و 2ـ مرکاپتوبنزایمیدازول (MBI) از طریق واکنش تبادل یونی اصلاح سطحی گردید و به عنوان نانوپیگمنت های ضدخوردگی داخل رزین اپوکسی به کار گرفته شد. از آزمون های انکسار اشعه ایکس زاویه کوچک (SAXS) و میکروسکوپ الکترونی عبوری (TEM) برای ارزیابی پراکنش نانوپیگمنت های هیبریدی در داخل ماتریس پوشش استفاده شد و مورفولوژی ساختاری ترکیبات توسط آزمــون میکروسکوپ الکترونی روبشی (SEM) بررسی شد. از آزمــون های طیف سنجی امپدانس الکتروشیمیایی (EIS) و مه نمکی نیز برای بررسی رفتار خوردگی نانو پوشش ها در محیط خورنده محلول %5/3 کلرید سدیم استفاده گردید و همچنین آزمون سنجش زاویه تماس برای ارزیابی میزان آبدوستی و آبگریزی سطوح فولادی پوشش شده با و بدون ترکیبات رُسی بهینه شده با ترکیبات آزولی استفاده شد. نتایج حاکی از آن بوده که پوشش اپوکسی حاوی 3 درصد وزنی از نانوپیگمنت MMT+MBT در مقایسه پوشش اپوکسی حاوی 3 درصد وزنی از نانوپیگمنت MMT+MBI و پوشش اپوکسی خالص پس از 60 روز غوطه وری در محیط خورندة مذکور دارای عملکرد ضدخوردگی بالاتری بود و حضور این نانوپیگمنت، موجب افزایش آبگریزی سطح مربوطه گردید.

کلیدواژه‌ها

موضوعات


[1]M.Yeganeh, S.M. Marashi, N. Mohammadi, Smart Coatings in Anti-corrosion Applications: Types and Corrosion Protection Mechanisms, Journal of Studies in Color World. 7(2017), 29-46.

[2] A.A. Javidparvar, B. Ramezanzadeh, E. Ghasemi, A review on the sol-gel based coatings used for the protection of metal substrates against corrosion, Journal of Studies in Color World. 5(2015), 31-44.

[3]M. Khani, A. Bahrami, V. Momeni, Microbial Corrosion and Methods to Prevent and Control it Using Coatings and Biological Factors, Journal of Studies in Color World. 4(2015), 3-20.

[4] V.A.D. Souza, and A. Neville, Mechanisms and kinetics of WC-Co− Cr high velocity oxy-fuel thermal spray coating degradation in corrosive environments,J. Therm. Spray Technol.  15(2006), 106-117.

[5]A. E. Hughes, I. S. Cole, T. H. Muster, R. J. Varley,Designing green self-healing coatings for metal protection,NPG Asia Mater.2(2011), 143-151.

[6] O.Lopez-Garrity, and G.S. Frankel, Synergistic corrosion inhibition of AA2024-T3 by sodium silicate and sodium molybdate,ECS Electrochem. Lett.  3(2014), 33-35.

[7] P.B.Raja, M. Ismail, S. Ghoreishiamiri, J. Mirza, M.C. Ismail, S. Kakooei, and A.A. Rahim,Reviews on corrosion inhibitors: a short view,Chem. Eng. Commun. 203(2016), 1145-1156.

[8] B.S. Skerry, C.T. Chen, C.J. Ray, Pigment volume concentration and its effect on the corrosion resistance properties of organic paint films, J. Coat. Technol.64 (1992), 77–86.

[9] J.R. Vilche, E.C. Bucharsky, C.A. Giudice, Application of EIS and SEM to evaluate the influence of pigment shape and content in ZRP formulations on the corrosion prevention of naval steel,Corros. Sci. 44(2002) 1287–1309.

[10] A.A. Javidparvar, B. Ramezanzadeh, E. ghasemi, An Overview on the Anti-Corrosion Properties of the Pigments Based on Iron Oxide Nanoparticles, Journal of Studies in Color World. 4(2014), 47-60.

[11] M. Mahdavian, M.M. Attar, Electrochemical behavior of some transition metal acetylacetonate complexes as corrosion inhibitors for mild steel,Corros. Sci. 51(2009), 409–414.

[12] P. Wang, D. Zhang, R. Qiu, J. Wu, Super-hydrophobic metal complex film fabricated electrochemically on copper as a barrier to corrosive medium,Corros. Sci. 83(2014), 317–326.

[13] J. Tedim, S.K. Poznyak, A. Kuznetsova, D. Raps, T. Hack, M.L. Zheludkevich, M.G.S. Ferreira, Enhancement of active corrosion protection via combination of inhibitor-loaded nanocontainers,ACS Appl Mater Interfaces. 2(2010), 1528–1535.

[14]K.V.Yeole,I.P.  Agarwal, and S.T.Mhaske, The effect of carbon nanotubes loaded with 2-mercaptobenzothiazole in epoxy-based coatings,J. Coat. Technol.13(2016), 31-40.

[15]K.A.Zahidah,S.Kakooei,M.Kermanioryani,H.Mohebbi,M.C.  Ismail, andP.B. Raja, Benzimidazole-loaded Halloysite Nanotube as a Smart Coating Application, International Journal of Engineering and Technology. 7(2017), 243-254.

[16]E.Abdullayev, andY. Lvov, Clay nanotubes for corrosion inhibitor encapsulation: release control with end stoppers,J. Mater. Chem.  20(2010), 6681-6687.

[17]A.Bahrani,R.  Naderi, andM. Mahdavian, Chemical modification of talc with corrosion inhibitors to enhance the corrosion protective properties of epoxy-ester coating,Prog. Org. Coat.  120 (2018), 110-122.

[18]N.Mehrabian, andA.A.SarabiDariani, Anticorrosive performance of epoxy/modified clay nanocomposites,Polym. Compos.2017, https://doi.org/10.1002/pc.24492

[19]Y.Dong,F. Wang, and Q. Zhou, Protective behaviors of 2-mercaptobenzothiazole intercalated Zn–Al-layered double hydroxide coating,J. Coat. Technol.  11(2014), 793-803.

[20]M.Izadi,T.Shahrabi, andB.Ramezanzadeh, Electrochemical investigations of the corrosion resistance of a hybrid sol–gel film containing green corrosion inhibitor-encapsulated nanocontainers,J Taiwan Inst Chem Eng. 81(2017), 356-372.

[21]M.L.Zheludkevich,D.G.Shchukin,K.A.Yasakau,H.Möhwald, and M.G. Ferreira, Anticorrosion coatings with self-healing effect based on nanocontainers impregnated with corrosion inhibitor,Chem. Mater.19(2007), 402-411.

[22]Y.Feng, andY.F. Cheng, An intelligent coating doped with inhibitor-encapsulated nanocontainers for corrosion protection of pipeline steel,Chem. Eng. J.  315(2017), 537-551.

[23]L.Rassouli,R.Naderi, and M.Mahdavian, Study of the active corrosion protection properties of epoxy ester coating with zeolite nanoparticles doped with organic and inorganic inhibitors,J Taiwan Inst Chem Eng. 85(2018), 207-220.

[24]L.Rassouli,R.Naderi, and M.Mahdavain, The role of micro/nano zeolites doped with zinc cations in the active protection of epoxy ester coating.Appl. Surf. Sci. 423(2017), 571-583.

[25]K.Kermannezhad,A.N.Chermahini,M.M. Momeni, andB.Rezaei, Application of amine-functionalized MCM-41 as pH-sensitive nano container for controlled release of 2-mercaptobenzoxazole corrosion inhibitor,Chem. Eng. J. 306(2016), 849-857.

[26]N.P.Tavandashti,M.Ghorbani,A.Shojaei,J.M.C.Mol,H.Terryn, andY. Gonzalez-Garcia, pH-responsive nanostructured polyaniline capsules for self-healing corrosion protection: The influence of capsule concentration,SCI IRAN. 24(2017), 3512-3520.

[27] M.F.Montemor,D.V. Snihirova,M.G. Taryba,S.V. Lamaka,I.A. Kartsonakis,A.C. Balaskas, G.C. Kordas,J. Tedim,A. Kuznetsova,M.L.  Zheludkevich, andM.G.S. Ferreira, Evaluation of self-healing ability in protective coatings modified with combinations of layered double hydroxides and cerium molibdate nanocontainers filled with corrosion inhibitors,Electrochim. Acta.  60(2012), 31-40.

[28] A.Ghazi, E. Ghasemi, M. Mahdavian, B. Ramezanzadeh, and M. Rostami, The application of benzimidazole and zinc cations intercalated sodium montmorillonite as smart ion exchange inhibiting pigments in the epoxy ester coating,Corros. Sci. 94(2015), 207-217.

[29] M.Edraki, and D.Zaarei, Modification of montmorillonite clay with 2-mercaptobenzimidazole and investigation of their antimicrobial properties, Asian J. Green Chem. 2(2018),189-200.

[30] M. Edraki, and D.Zaarei, Evaluation of thermal and antimicrobial behavior of Montmorillonite nanoclay modified with 2-Mercaptobenzothiazole,J Nanoanalysis. 5(2018), 26-35.

[31] D.Zaarei,F. Sharif,S.M.Kassiriha, and M.Moazzami Gudarzi, Preparation and evaluation of epoxy-clay nanocomposite coatings for corrosion protection,Int. J. Nanosci. Nanotechnol. 6(2010), 126-136.

[32] D.Zaarei,A.A.Sarabi,F. Sharif,M.M. Gudarzi, andS.M.Kassiriha, The impact of organoclay on the physical and mechanical properties of epoxy-clay nanocomposite coatings,J MACROMOL SCI B. 49(2010), 960-969.

[33] R.J.Marathe,A.B.Chaudhari,R.K.Hedaoo,D.Sohn,V.R. Chaudhari, andV.V.Gite, Urea formaldehyde (UF) microcapsules loaded with corrosion inhibitor for enhancing the anti-corrosive properties of acrylic-based multi-functional PU coatings,RSC Adv.  5(2015), 15539-15546.

[34] E.Abdullayev,V.Abbasov,A.Tursunbayeva,V.Portnov,H.Ibrahimov,G.Mukhtarova, and Y. Lvov, Self-healing coatings based on halloysite clay polymer composites for protection of copper alloys,ACS Appl Mater Interfaces.5(2013), 4464-4471.

[35] A.Joshi,E.Abdullayev,A.Vasiliev,O.Volkova, andY. Lvov, Interfacial modification of clay nanotubes for the sustained release of corrosion inhibitors, Langmuir. 29(2012), 7439-7448.

[36] N.Goudarzi, and H.Farahani, Investigation on 2-mercaptobenzothiazole behavior as corrosion inhibitor for 316-stainless steel in acidic media,ANTI CORROS METHOD M.61(2013), 20-26.

[37] R.H.Albrakaty,N.A. Wazzan, andI.B.Obot, Theoretical Study of the Mechanism of Corrosion Inhibition of Carbon Steel in Acidic Solution by 2-aminobenzothaizole and 2-Mercatobenzothiazole, Int. J. Electrochem. Sci. 13(2018), 3535-3554.

[38] M.A.Zadeh,J.Tedim,M.Zheludkevich,S. van der Zwaag, and S.J. Garcia, Synergetic active corrosion protection of AA2024-T3 by 2D-anionic and 3D-cationic nanocontainers loaded with Ce and mercaptobenzothiazole,Corros. Sci. 135(2018), 35-45.

[39] A.C.Balaskas,T. Hashimoto,M.Curioni, andG.E. Thompson, Two-shell structured PMAA@ CeO2 nanocontainers loaded with 2-mercaptobenzothiazole for corrosion protection of damaged epoxy coated AA 2024-T3,Nanoscale.9(2017), 5499-5508.

[40] J.Yang,Y. Yang,A.Balaskas, and M.Curioni, Development of a Chromium-Free Post-Anodizing Treatment Based on 2-Mercaptobenzothiazole for Corrosion Protection of AA2024T3, J. Electrochem. Soc.164(2017), 376-382.