تولید داربست های نانولیفی پوسته- مغزی رسانا جهت بهبود ترمیم ضایعه نخاعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشگاه حضرت معصومهسلام الله علیها، قم

2 استاد، دانشکده مهندسی نساجی، دانشگاه صنعتی امیرکبیر، تهران

3 استادیار، گروه آناتومی، دانشکده پزشکی، دانشگاه علوم پزشکی گیلان، رشت، ایران

/amnc.2018.6.23.6

چکیده

از آنجا که درمان ضایعات نخاعی به علت پیچیدگی سیستم اعصاب مرکزی به سادگی امکان پذیر نیست، راه کارهای بازسازی و ترمیم بافت عصب در دنیا بسیار مورد توجه واقع شده است. در این پژوهش دو نوع داربست نانولیفی سه بعدی رسانا (پلی لاکتیک گلایکولیک اسید- پلی کاپرولاکتان/پلی آنیلین: PCL/PANI-PLGA) و نارسانا (پلی لاکتیک گلایکولیک اسید- پلی لاکتیک گلایکولیک اسید PLGA-PLGA) با ساختار پوسته- مغزی طراحی و توسط یک شیوه الکتروریسی ترکیبی تولید شده است. سامانه الکتروریسی ترکیبی طراحی شده دارای یک سامانه گردابی و یک سامانه دو نازله بوده و قادر به تولید داربست استوانه ای سه بعدی با پوسته زبر نانومقیاس و مغزی آرایش یافته (میکرورشته های آرایش یافته شامل نانوالیاف آرایش یافته) می باشد. بر اساس آزمایش ها و بررسی ها در شرایط برون تنی و درون تنی، بیشترین میزان تکثیر سلول های عصبی بر روی داربست سه بعدی با مغزی رسانا مشاهده گردید. در بررسی های حیوانی نیز نتایج آزمایش حرکتی بیانگر بهبود معنادار نمونه های پیوند زده شده نسبت به نمونه های شاهد می باشد.

کلیدواژه‌ها

موضوعات


[1]      J. P. Fisher, A. G. Mikos, and J. D. Bronzino, Tissue Engineering, CRC press-Taylor & Francis Group, 2007, 303-324.
[2]      Y. Xiong, Y. S. Zeng, C. G. Zeng, B. L. Du, L. M. He, D. P. Quan, W. Zhang, J. M. Wang, J. L. Wu, W. Li, J. Li, Synaptic transmission of neural stem cells seeded in 3-dimensional PLGA scaffolds. Biomaterials, 30 (2009), 3711–3722.
[3]      Y. Ikada, Tissue Engineering Fundamentals and Applications, Academic Press is an imprint of Elsevier, 2006, 173-188.
[4]      B. Shrestha, K. Coykendall, Y. Li, A. Moon, P. Priyadarshani, L. Yao, Repair of injured spinal cord using biomaterial scaffolds and stem cells. Stem. Cell Research & Therapy, 5 (2014), 91-102. 
[5]      M. Moore, J. Friedman, Multiple-Channel Scaffolds to Promote Spinal Cord Axon Regeneration. Biomaterials,  27 (2006), 419-429.
[6]      A. Krysh, G. Rooney, Relationship between Scaffold Channel Diameter and Number of Regenerating Axons in the Transected Rat Spinal Cord, Acta Biomaterialia. 5, 7 (2009), 2551-2559.
[7]      NT. Hiep, BT. Lee, Electrospinning of PLGA/PCL blends for tissue engineering and their biocompatibility. J Mater Sci: Mater Med, 21 (2010), 1969–1978.
[8]      BL. Du, C. Zeng, W. Zhang, D. Quan, E. Ling, A comparative study of gelatin sponge scaffolds and PLGA scaffolds transplanted to completely transected spinal cord of rat. J Biomed Mater Res, 102A (2014), 1715–1725.
[9]      F. Zamani, M. Latifi, M. Amani-Tehran, MA. Shokrgozar. Effects of PLGA Nanofibrous Scaffolds Structure on Nerve Cell Directional Proliferation and Morphology, Fiber Polym, 14 (2013), 568–702.
[10]  F. Jahanmard, M. Amani-Tehran, F. Zamani, M. Nematollahi, L. Ghasemi, MH. Nasr-Esfahani. Effect of nanoporous fibers on growth and proliferation of cells on electrospun poly (ϵ-caprolactone) scaffolds. Int J Poly Mat & Poly Biomat, 63 ( 2013), 57-64.
[11]  F. Zamani, M. Amani-Tehran, M. Latifi, MA. Shokrgozar. The influence of surface nanoroughness of electrospun PLGA nanofibrous scaffold on nerve cell adhesion and proliferation. J Mater Sci: Mater Med, 24 (2013), 1551–1560.
[12]  F. Zamani, Engineering of structural properties of PLGA nanofibrous scaffold for neural cell culture, PhD Thesis, Amirkabir University of Technology, Iran, 2013.
[13]  L. Ghasemi-Mobarakeh, MP. Prabhakaran, M. Morshed, MH. Nasr-Esfahani, S. Ramakrishna, Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering, Tissue Engineering, 15A (2009), 1-16. 
[14]  MP. Prabhakaran, L. Ghasemi-Mobarakeh, G. Jin, S. Ramakrishna, Electrospun conducting polymer nanofibers and electrical stimulation of nerve stem cells, J Biosci & Bioeng, 112 (2011), 501-507.
[15]  A. Al-Majed, CM. Neumann, TM. Brushart, T. Gordon, Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J Neurosci 20 (2000), 2602–2608.
[16]  CY. Ho, CH. Yao, WC. Chen, WC. Shen, DT. Bau, Electroacupuncture and Acupuncture Promote the Rat’s Transected Median Nerve Regeneration. Evidence-Based Complementary and Alternative Medicine, 2013 (2013), 1-8.
[17]  MC. Lu, CY. Ho, SF. Hsu, HC. Lee, JH. Lin, CH. Yao, YS. Chen, Effects of Electrical Stimulation at Different Frequencies on Regeneration of Transected Peripheral Nerve. Neurorehabil Neural Repair, 22 (2008), 367-373.
[18]  LMY. Yu, ND. Leipzig, MS. Shoichet, Promoting neuron adhesion and growth. Materials Today, 11b, 2008, 36–43.
[19]  Llorens E, Armelin E, Madrigal M, Valle L, Aleman C, Puiggali J, Nanomembranes and nanofibers from biodegradable conducting polymers. polymers 5 (2013), 1115-1157. 
[20]  CE. Schmidt, VR. Shastri, JP. Vacanti, R. Langer, Stimulation of neurite outgrowth using an electrically conducting polymer. Proc. Natl. Acad. Sci, 94 (1997), 8948–8953.
[21]  PR. Bidez, AG. Macdiarmid, EC. Venancio, Y. Wei, PI. Lelkes, Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts. J Biomater Sci Polymer, 17 (2006), 199-212.
[22]  Q.Z. Yu, M M. Shi,  M. Deng, M. Wang, H. Z. Chen, Morphology and conductivity of polyaniline sub-micron fibers prepared by electrospinning. Mat Sci & Engin, 150B (2008), 70–76.
[23]  A. Yang, Z. Huang, G. Yin, X. Pu, Fabrication of aligned, porous and conductive fibers and their effects on cell adhesion and guidance, Colloid Surf. B, Biointerfaces, 134 (2015), 469-474.
[24]  L. Ghasemi-Mobarakeh, M. Prabhakaran, M. Morshed, MH. Nasr-Esfahani, H. Baharvand, S. Kiani, S. Al-Deyab, S. Ramakrishna, Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering, J Tissue Eng Regen Med, 5 (2011), 17–35.
[25]  CH. Wang, YQ. Dong, K. Sengothi, KL. Tan, ET. Kang, In-vivo tissue response to polyaniline. Synthetic Metals, 102 (1999), 1313-1314.
[26]  S. Kamalesh, P. Tan, J. Wang, T. Lee, E. Kang, CH. Wang, Biocompatibility of electroactive polymers in tissues, J Biomed Mater Res, 52 (2000), 467–478.
[27]  ID. Norris, MM. Shaker, FK. Ko, AG. MacDiarmid, Electrostatic fabrication of ultrafine conducting fibers: polyanilinerpolyethylene oxide blends, Synthetic Metals, 114 (2000), 109–114.
[28]   M. Li, Y. Guo, Y. Wei, AG. MacDiarmid, PI. Lelkes, Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials, 27 (2006), 2705–2715.
[29]  M. Yanılmaz, AS. Sarac, A review: effect of conductive polymers on the conductivities of electrospun mats, Textile Res J, 84 (2014),1325–1342.
[30]  H. Tabesh, Gh. Amoabediny, N. SalehiNik, The role of biodegradable engineered scaffolds seeded with Schwann cells for spinal cord regeneration, Neurochemistry International, 54 (2009), 73–83.
[31]  A. Subramanian, U. Krishnan, S. Sethurama, Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration, J Biomed Scie, 16 (2009), 108-119.
[32]  N. Madigan, S. McMahon, T. Brien, M. Yaszemski, A. Windebank, Current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury using polymer scaffolds, Respiratory Physiology & Neurobiology, 169 (2009), 183-199.
[33]  W. He, Z. Ma, W. Teo, Y. Dong, P. Robless, T. Lim, S. Ramakrishna, Tubular nanofiber scaffolds for tissue engineered small-diameter vascular grafts, J. Biomed. Mater. Res, 90A (2009), 205–216.
[34]  S. Hee, J. Yoo, G. Lim, A. Atala, J. Stitzel, In vitro evaluation of electrospun nanofiber scaffolds for vascular graft application, J. Biomed. Mater. Res, 83A (2007), 999–1008.
[35]  D. Liang, B.S. Hsiao, B. Chu, Functional electrospun nanofibrous scaffolds for biomedical applications, Advanced Drug Delivery Reviews, 59 (2007), 1392–1412.
[36]  L. Ghasemi-Mobarakeh, M. P. Prabhakaran, M. Morshed, Electrospun poly(3-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering, Biomaterials, 29 (2008), 4532–4539.
[37]  A. Hurtado, J. Cregg, H. Wang, D. Wendell, M. Oudega, Robust CNS regeneration after complete spinal cord transection using aligned poly-L-lactic acid microfibers. Biomaterials,  32 (2011), 6068-6079.
[38]   S. Shang, F. Yang, X. Cheng, X. Walboomer, J. Jansen, The effect of electrospun fiber alignment on the behaviour of rat peridontal ligament cells. Eur. Cell. Mater, 19 (2010), 180-19.
[39]  K. Aviss, J. Gough, S. Downes, Aligned electrospun polymer fibers for skeletal muscle regeneration, Eur. Cell. Mater, 19 (2010), 193-204.
[40]  T. W. Chung, D. Z. Liu, S. Y. Wang, S. S. Wang, Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale, Biomaterials, 24 (2003), 4655–4661.
[41]  Y. W. Chun, D. Khang, K. M. Haberstroh, T. J. Webstermah, The role of polymer nanosurface roughness and submicron pores in improving bladder urothelial cell density and inhibiting calcium oxalate stone formation, Nanotechnology, 20 (2009), 085104 (8pp).
[42]  D. C. Miller, K. M. Haberstroh, T. J. Webster, PLGA nanometer surface features manipulate fibronectin interactions for improved vascular cell adhesion, J. Biomed. Mater. Res. A, 81 (2007), 678-684.
[43]  M. Yousefzadeh, M. Latifi, W. Teo, M. Amani-Tehran, S. Ramakrishna, Producing continuous twisted yarn from Well-aligned nanofibers by water vortex. Polym. Eng. Sci, 51 (2011), 323-329.
[44]  F. Dabirian, S A. Hosseini, Novel method for nanofbre yarn production using two differently charged nozzles, Fibers Text  East  Eur, 17 (2009), 45-47.
F. Hajiani, A A. Jeddi, A A. Gharehaghaji, An Investigation on the effects of twist on geometry of the electrospinning triangle and polyamide 66 nanofiber yarn strength, Fiber Polym, 1 (2010), 244-252.