کاربرد پارچه کربنی پوشش داده شده با پلی‌‌آنیلین به عنوان کاتد سلول خورشیدی رنگ حساس

نوع مقاله: مقاله پژوهشی

نویسندگان

گروه مهندسی نساجی، دانشکده فنی و مهندسی، دانشگاه گیلان، رشت، گیلان، ایران

چکیده

در این تحقیق خواص الکتروکاتالیستی و فوتوولتائیک پارچه کربنی پوشش داده شده با پلی‌‌آنیلین با روش‌‌های پلیمریزاسیون مختلف، به عنوان الکترود کاتد سلول خورشیدی رنگ حساس مورد ارزیابی قرار گرفت. بر اساس نتایج به دست آمده، خواص الکتروکاتالسیتی پارچه پوشش داده شده با پلی‌‌آنیلین با روش الکتروشیمیایی نسبت به روش‌‌های اکسایش شیمیایی و بخار شیمیایی بهتر بوده است. همچنین بازده فوتوولتائیک سلول ساخته شده با این کاتد نیز بیشتر از دو روش دیگر و برابر با 3/85 درصد بوده است. اگرچه بازده فوتوولتائیک این کاتد در مقایسه با پلاتین با بازده 7/42 درصد، کمتر می‌‌باشد، این کاتد سبک‌‌تر و انعطاف‌‌پذیر بوده و امکان استفاده از آن در منسوجات هوشمند وجود دارد. همچنین با توجه به ولتاژ مدار باز بیشتر این کاتد نسبت به پلاتین، اعمال برخی اصلاحات در فرآیند پلیمریزاسیون که منجر به افزایش مقدار جریان اتصال کوتاه و ضریب انباشت سلول گردد، دستیابی به بازده فوتوولتائیک بیشتر امکان‌‌پذیر می‌‌باشد.

کلیدواژه‌ها


[1] Yu M, Long Y.Z, Sun B, Fan Z, Recent advances in solar cells based on one-dimensional nanostructure arrays, Nanoscale, 4, 2012, 2783-2796.

[2] O'Regan B, Gratzel M, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353, 1991, 737-740.

[3] Shan C H, Sang X J, Zhang H, Li J S, Chen W L, Su Z M, Wang E B, Enhanced DSSC performance with tri-pyridine-ruthenium heteropolytungstate, Inorganic Chemistry Communications, 50, 2014, 13-16.

[4] Mozaffari S A, Ranjbar M, Kouhestanian E, Salar Amoli H, Armanmehr M H, An investigation on the effect of electrodeposited nanostructured ZnO on the electron transfer process efficiency of TiO2 based DSSC, Materials Science in Semiconductor Processing, 40, 2015, 285-292.

[5] Xu K, Shen Y, Zhang Z, Cao M, Gu F, Wang L, The influence of different modified graphene on property of DSSCs, Applied Surface Science, 362, 2016, 477-482.

[6] Gong J, Liang J, Sumathy K, Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials, Renewable and Sustainable Energy Reviews, 16, 2012, 5848-5860.

[7] Wei D, Dye Sensitized Solar Cells, International Journal of Molecular Sciences, 11, 2010, 1103-1113.

[8] Yang C C, Zhang H Q, Zheng Y R, DSSC with a novel Pt counter electrodes using pulsed electroplating techniques, Current Applied Physics, 11, 2011, S147-S153.

[9] Moraes R S, Saito E, Leite D M G, Massi M, da Silva Sobrinho A S, Optical, electrical and electrochemical evaluation of sputtered platinum counter electrodes for dye sensitized solar cells, Applied Surface Science, 364, 2016, 229-234.

[10] Tsai C H, Hsu S Y, Lu C Y, Tsai Y T, Huang T W, Chen Y F, Jhang Y H, Wu C C, Influences of textures in Pt counter electrode on characteristics of dye-sensitized solar cells, Organic Electronics, 13, 2012, 199-205.

[11] Yang Q, Yang P, Duan J, Wang X, Wang L, Wang Z, Tang Q, Ternary platinum alloy counter electrodes for high-efficiency dye-sensitized solar cells, Electrochimica Acta, 190, 2016, 85-91.

[12] Murakami, T N, Grätzel M, Counter electrodes for DSC: Application of functional materials as catalysts, Inorganica Chimica Acta, 361, 2008, 572-580.

[13] Tian H, Yu Z, Hagfeldt A, Kloo L, Sun L, Organic Redox Couples and Organic Counter Electrode for Efficient Organic Dye-Sensitized Solar Cells, Journal of the American Chemical Society, 133, 2011, 9413-9422.

[14] Mohanty S P, More V, Bhargava P, Effect of aging conditions on the performance of dip coated platinum counter electrode based dye sensitized solar cells, RSC Advances, 5, 2015, 18647-18654.

[15] Saranya K, Rameez M, Subramania A, Developments in conducting polymer based counter electrodes for dye-sensitized solar cells – An overview, European Polymer Journal, 66, 2015, 207-227.

[16] Das T K, Prusty S, Review on Conducting Polymers and Their Applications, Polymer-Plastics Technology and Engineering, 51, 2012, 1487-1500.

[17] Li Y, Conducting Polymers In: Organic Optoelectronic Materials, Springer International Publishing, 2015, pp. 23-50.

[18] Asatekin A, Barr M C, Baxamusa S H, Lau K K S, Tenhaeff W, Xu J, Gleason K K, Designing polymer surfaces via vapor deposition, Materials Today, 13, 2010, 26-33.

[19] Niu H, Qin S, Mao X, Zhang S, Wang R, Wan L, Xu J, Miao S, Axle-sleeve Structured MWCNTs/Polyaniline Composite Film as Cost-effective Counter-Electrodes for High Efficient Dye-Sensitized Solar Cells, Electrochimica Acta, 121, 2014, 285-293.

[20] Lin J Y, Wang W Y, Lin Y T, Characterization of polyaniline counter electrodes for dye-sensitized solar cells, Surface and Coatings Technology, 231, 2013, 171-175.

[21] Qin Q, Zhang R, A novel conical structure of polyaniline nanotubes synthesized on ITO-PET conducting substrate by electrochemical method, Electrochimica Acta, 89, 2013, 726-731.

[22] Molapo K M, Ndangili P M, Ajayi R F, Mbambisa G, Mailu S M, Njomo N, Masikini M, Baker P, Iwuoha E I, Electronics of Conjugated Polymers (I): Polyaniline, International Journal of Electrochemical Science. 7, 2012, 11859-11875.

[23] Kellenberger, A., Dmitrieva, E., Dunsch, L. The stabilization of charged states at phenazine-like units in polyaniline under p-doping: an in situATR-FTIR spectroelectrochemical study. Physical Chemistry Chemical Physics. 2011, 13, 3411-20.

[24] Li Q, Wu J, Tang Q, Lan Z, Li P, Lin J, Fan L, Application of microporous polyaniline counter electrode for dye-sensitized solar cells, Electrochemistry Communications, 10, 2008, 1299-1302.

[25] Xu, P, Tang Q, Chen H, He B, Insights of close contact between polyaniline and FTO substrate for enhanced photovoltaic performances of dye-sensitized solar cells, Electrochimica Acta, 125, 2014, 163-169.

[26] Zhang J, Hreid T, Li X, Guo W, Wang L, Shi X, Haiquan S, Zhuobin Y, Nanostructured polyaniline counter electrode for dye-sensitised solar cells: Fabrication and investigation of its electrochemical formation mechanism, Electrochimica Acta, 55, 2010, 3664-3668.

[27] Li Z, Ye B, Hu X, Ma X, Zhang X, Deng Y, Facile electropolymerized-PANI as counter electrode for low cost dye-sensitized solar cell, Electrochemistry Communications, 11, 2009, 1768-1771.

[28] Wang S, Lu S, Li X, Zhang X, He S, He T, Study of H2SO4 concentration on properties of H2SO4 doped polyaniline counter electrodes for dye-sensitized solar cells, Journal of Power Sources, 242, 2013, 438-446.

[29] Hashmi G, Miettunen K, Peltola T, Halme J, Asghar I, Aitola K, Toivola M, Lund P, Review of materials and manufacturing options for large area flexible dye solar cells, Renewable and Sustainable Energy Reviews, 15,2011, 3717-3732.

[30] Zhou H, Shi Y, Qin D, An J, Chu L, Wang C, Wang Y, Guo W, Wang L, Ma T, Printable fabrication of Pt-and-ITO free counter electrodes for completely flexible quasi-solid dye-sensitized solar cells, Journal of Materials Chemistry A, 1,2013, 3932-3937.

[31] Balasingam S K, Kang M G, Jun Y, Metal substrate based electrodes for flexible dye-sensitized solar cells: fabrication methods, progress and challenges, Chem Commun, 49, 2013, 11457-11475.

[32] Muneshwar T P, Varma V, Meshram N, Soni S, Dusane R O, Development of low temperature RF magnetron sputtered ITO films on flexible substrate, Solar Energy Materials and Solar Cells, 94, 2010, 1448-1450.

[33] Zardetto V, Brown T M, Reale A, Di Carlo A, Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties, Journal of Polymer Science Part B: Polymer Physics, 49, 2011, 638-648.

[34] Bedeloglu A, Jimenez P, Demir A, Bozkurt Y, Maser W K, Sariciftci N S, Photovoltaic textile structure using polyaniline/carbon nanotube composite materials, The Journal of The Textile Institute, 102, 2011, 857-862.

[35] Tathavadekar M, Biswal M, Agarkar S, Giribabu L, Ogale S, Electronically and Catalytically Functional Carbon Cloth as a Permeable and Flexible Counter Electrode for Dye Sensitized Solar Cell, Electrochimica Acta, 123, 2014, 248-253.

[36] Xu J, Li M, Wu L, Sun Y, Zhu L, Gu S, Liu L, Bai Z, Fang D, Xu W, A flexible polypyrrole-coated fabric counter electrode for dye-sensitized solar cells, Journal of Power Sources, 257, 2014, 230-236.

[37] Xu Q, Li M, Yan P, Wei C, Fang L, Wei W, Bao H, Xu J, Xu W, Polypyrrole-coated cotton fabrics prepared by electrochemical polymerization as textile counter electrode for dye-sensitized solar cells, Organic Electronics, 29, 2016, 107-113.

[38] Sahito I A, Sun K C, Arbab A A, Qadir M B, Jeong S H, Graphene coated cotton fabric as textile structured counter electrode for DSSC, Electrochimica Acta, 173, 2015, 164-171.

[39] Arbab A A, Sun K C, Sahito I A, Qadir M B, Jeong S H, Multiwalled carbon nanotube coated polyester fabric as textile based flexible counter electrode for dye sensitized solar cell, Physical Chemistry Chemical Physics, 17, 2015, 12957-12969.

[40] Chen M, Shao L L, Review on the recent progress of carbon counter electrodes for dye-sensitized solar cells, Chemical Engineering Journal, 304, 2016, 629-645.

[41] Tiwari S, Bijwe J, Panier S, Tribological studies on polyetherimide composites based on carbon fabric with optimized oxidation treatment, Wear, 271, 2011, 2252-2260.

[42] Coyle S, Diamond D, Smart Nanotextiles: Materials and Their Application, Encyclopedia of Materials: Science and Technology (Second Edition), Elsevier, Oxford, 2010, 1-5.

[43] Jenkins G M, Kawamura K, Polymeric carbons: carbon fibre, glass and char, Cambridge University Press, 1976, 49-51.

[44] Santos A L, Botelho E C, Kostov K G, Nascente P A P, da Silva L L G, Atmospheric Plasma Treatment of Carbon Fibers for Enhancement of Their Adhesion Properties, IEEE Transactions on Plasma Science, 41, 2013,319-324.

[45] Tai Q, Chen B, Guo F, Xu S, Hu H, Sebo B, Zhao X Z, In Situ Prepared Transparent Polyaniline Electrode and Its Application in Bifacial Dye-Sensitized Solar Cells, ACS Nano, 5, 2011, 3795-3799.

[46] Tang Q, Cai H, Yuan S, Wang X, Counter electrodes from double-layered polyaniline nanostructures for dye-sensitized solar cell applications, Journal of Materials Chemistry A, 1, 2013, 317-323.

[47] Guo F, Hu H, Tai Q D, Chen B L, Sebo B, Bu C H, Xu J H, Zhao X Z, Facile preparation of nanofibrous polyaniline thin film as counter electrodes for dye sensitized solar cells, Journal of Renewable and Sustainable Energy, 4, 2012, 023109.

[48] Jang J, Kim H, Improvement of carbon fiber/PEEK hybrid fabric composites using plasma treatment. Polymer Composites, 18, 1997, 125-132.

[49] Qin Q, Tao J, Yang Y, Dong X, In situ oxidative polymerization of polyaniline counter electrode on ITO conductive glass substrate, Polymer Engineering & Science, 51, 2011, 663-669.

[50] Molina J, Esteves M F, Fernández J, Bonastre J, Cases F, Polyaniline coated conducting fabrics. Chemical and electrochemical characterization, European Polymer Journal, 47, 2011, 2003-2015.

[51] Bajgar V, Penhaker M, Martinková L, Pavlovič A, Bober P, Trchová M, Stejskal J, Cotton Fabric Coated with Conducting Polymers and its Application in Monitoring of Carnivorous Plant Response, Sensors, 16, 2016, 498.

[52] Xiao Y, Lin J Y, Wu J, Tai S Y, Yue G, Lin T W, Dye-sensitized solar cells with high-performance polyaniline/multi-wall carbon nanotube counter electrodes electropolymerized by a pulse potentiostatic technique, Journal of Power Sources, 233, 2013, 320-325.

[53] Yu Y, Tang Q, He B, Chen H, Zhang Z, Yu L, Platinum alloy decorated polyaniline counter electrodes for dye-sensitized solar cells, Electrochimica Acta, 190, 2016, 76-84.

[54] Castafier L, Markvart T, Principles of Solar Cell Operation, Practical Handbook of Photovoltaics: Fundamentals and Applications, Elsevier, 2002, 72-93.

[55] Chiang C H, Chen S C, Wu C G, Preparation of highly concentrated and stable conducting polymer solutions and their application in high-efficiency dye-sensitized solar cell, Organic Electronics, 14, 2013, 2369-2378.

[56] Jo Y, Cheon J Y, Yu J, Jeong H Y, Han C H, Jun Y, Joo S H, Highly interconnected ordered mesoporous carbon-carbon nanotube nanocomposites: Pt-free, highly efficient, and durable counter electrodes for dye-sensitized solar cells, Chemical Communications, 48, 2012, 8057-8059.