بررسی تاثیر پوشش پروتئینی البومین بر الگوی کرونای نانولوله های کربنی تک جداره

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، مرکز تحقیقات نانوفناوری، دانشکده داروسازی، دانشگاه علوم پزشکی تهران، تهران، ایران

2 استادیار، بانک سلولی ایران، انستیتو پاستور ایران، تهران، ایران

چکیده

پوشش پروتئین به عنوان یک استراتژی اصلاح سطح برجسته می تواند بر روی آرایش مولکول های زیستی در سطح مشترک با نانو مواد تاثیر بگذارند. در این مطالعه ، آلبومین سرم انسانی (HSA) برای اصلاح شیمی سطح نانولوله های کربنی تک دیواره (SWNTs) و نانولوله های کربنی تک دیواره کربوکسیله شده (CO2-SWNTs) اعمال شدند. این مطالعه برای پی بردن به اثر پوشش پروتئینی بر روی ترکیب پروتئین کرونا و فعالیت بیولوژیکی هر دو نوع SWNT انجام شد. روش های مختلفی به منظور مشخصه یابی خواص فیزیکوشیمیایی هر دو نوع SWNTs بعد از اصلاح سطحی انجام گرفت. نتایج نشان داد که HSA به دلیل خصوصیات بیولوژیکی و ساختاری منحصر به فرد خود می تواند باعث تغییر آرایش مولکول های زیستی کرونای SWNTs و CO2-SWNTs شود. پوشش پروتئین همچنین شدت پلاسمون هر دو نوع SWNTs را تغییر داد که بر روی کارایی برهمکنش آنها با پروتئین های موجود در پلاسما اثر گذاشت. علاوه بر این، هر دو کرونا های SWNTs سمیت و جذب سلولی کمتری را در مقایسه با نمونه های بالک نشان دادند. می توان نتیجه گیری کرد که اصلاح سطحی SWNTs با پروتئین HSA می تواند الگوی کرونا را تغییر دهد که متعاقباً بر روی فعالیت بیولوژیکی این نانوذرات تاثیر می گذارد.

کلیدواژه‌ها

موضوعات


[1] Bussy C, Methven L, Kostarelos K. Hemotoxicity of carbon nanotubes. Advanced drug delivery reviews. 2013;65(15):2127-2134.

[2] Mottaghitalab F, Farokhi M, Zaminy A, et al. A biosynthetic nerve guide conduit based on silk/SWNT/fibronectin nanocomposite for peripheral nerve regeneration. PloS one. 2013;8(9):e74417.

[3] Shokrgozar MA, Mottaghitalab F, Mottaghitalab V, et al. Fabrication of porous chitosan/poly (vinyl alcohol) reinforced single-walled carbon nanotube nanocomposites for neural tissue engineering. Journal of biomedical nanotechnology. 2011;7(2):276-284.

[4] Adeli M, Mirab N, Alavidjeh MS, et al. Carbon nanotubes-graft-polyglycerol: biocompatible hybrid materials for nanomedicine. Polymer. 2009;50(15):3528-3536.

[5] Dinan NM, Atyabi F, Rouini M-R, et al. Doxorubicin loaded folate-targeted carbon nanotubes: preparation, cellular internalization, in vitro cytotoxicity and disposition kinetic study in the isolated perfused rat liver. Materials Science and Engineering: C. 2014;39:47-55.

[6] Atyabi F, Adeli M, Sobhani Z, et al. Poly (citric acid) functionalized carbon nanotube drug delivery system. Google Patents; 2013.

[7] Hassanzadeh P, Arbabi E, Rostami F, et al. Carbon nanotubes prolong the regulatory action of nerve growth factor on the endocannabinoid signaling. Physiology and Pharmacology. 2015;19(3):167-176.

[8] Service R. American Chemical Society meeting. Nanomaterials show signs of toxicity. Science (New York, NY). 2003;300(5617):243.

[9] Brumfiel G. Nanotechnology: A little knowledge. Nature. 2003;424(6946):246-248.

[10] Monopoli MP, Walczyk D, Campbell A, et al. Physical− chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. Journal of the American Chemical Society. 2011;133(8):2525-2534.

[11] Prapainop K, Witter DP, Wentworth Jr P. A chemical approach for cell-specific targeting of nanomaterials: small-molecule-initiated misfolding of nanoparticle corona proteins. Journal of the American Chemical Society. 2012;134(9):4100-4103.

[12] Monopoli MP, Åberg C, Salvati A, et al. Biomolecular coronas provide the biological identity of nanosized materials. Nature nanotechnology. 2012;7(12):779-786.

[13] Nyström AM, Fadeel B. Safety assessment of nanomaterials: implications for nanomedicine. Journal of Controlled Release. 2012;161(2):403-408.

[14] Oberdörster G. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. Journal of internal medicine. 2010;267(1):89-105.

[15] Mirsadeghi S, Dinarvand R, Ghahremani MH, et al. Protein corona composition of gold nanoparticles/nanorods affects amyloid beta fibrillation process. Nanoscale. 2015;7(11):5004-5013.

[16] Varnamkhasti BS, Hosseinzadeh H, Azhdarzadeh M, et al. Protein corona hampers targeting potential of MUC1 aptamer functionalized SN-38 core–shell nanoparticles. International journal of pharmaceutics. 2015;494(1):430-444.

[17] Lundqvist M, Stigler J, Elia G, et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proceedings of the National Academy of Sciences. 2008;105(38):14265-14270.

[18] Huang R, Carney RP, Stellacci F, et al. Protein–nanoparticle interactions: the effects of surface compositional and structural heterogeneity are scale dependent. Nanoscale. 2013;5(15):6928-6935.

[19] Gebauer JS, Malissek M, Simon S, et al. Impact of the nanoparticle–protein corona on colloidal stability and protein structure. Langmuir. 2012;28(25):9673-9679.

[20] Tenzer S, Docter D, Rosfa S, et al. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS nano. 2011;5(9):7155-7167.

[21] Lesniak A, Campbell A, Monopoli MP, et al. Serum heat inactivation affects protein corona composition and nanoparticle uptake. Biomaterials. 2010;31(36):9511-9518.

[22] Hankin S, Boraschi D, Duschl A, et al. Towards nanotechnology regulation–publish the unpublishable. Nano Today. 2011;6(3):228-231.

[23] Salvador-Morales C, Flahaut E, Sim E, et al. Complement activation and protein adsorption by carbon nanotubes. Molecular immunology. 2006;43(3):193-201.

[24] Zhang B, Xing Y, Li Z, et al. Functionalized carbon nanotubes specifically bind to α-chymotrypsin’s catalytic site and regulate its enzymatic function. Nano letters. 2009;9(6):2280-2284.

[25] Andersen AJ, Robinson JT, Dai H, et al. Single-walled carbon nanotube surface control of complement recognition and activation. ACS nano. 2013;7(2):1108-1119.

[26] Hamad I, Hunter AC, Rutt KJ, et al. Complement activation by PEGylated single-walled carbon nanotubes is independent of C1q and alternative pathway turnover. Molecular immunology. 2008;45(14):3797-3803.

[27] Ge C, Du J, Zhao L, et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proceedings of the National Academy of Sciences. 2011;108(41):16968-16973.

[28] Mottaghitalab F, Farokhi M, Atyabi F, et al. The effect of fibronectin on structural and biological properties of single walled carbon nanotube. Applied Surface Science. 2015;339:85-93.

29. Meng J, Song L, Xu H, et al. Effects of single-walled carbon nanotubes on the functions of plasma proteins and potentials in vascular prostheses. Nanomedicine: Nanotechnology, Biology and Medicine. 2005;1(2):136-142.

[30] Alazzam A, Mfoumou E, Stiharu I, et al. Identification of deregulated genes by single wall carbon-nanotubes in human normal bronchial epithelial cells. Nanomedicine: Nanotechnology, Biology and Medicine. 2010;6(4):563-569.

[31] Albini A, Mussi V, Parodi A, et al. Interactions of single-wall carbon nanotubes with endothelial cells. Nanomedicine: Nanotechnology, Biology and Medicine. 2010;6(2):277-288.

[32] Edgington AJ, Petersen EJ, Herzing AA, et al. Microscopic investigation of single-wall carbon nanotube uptake by Daphnia magna. Nanotoxicology. 2014;8(sup1):2-10.

[33] Mottaghitalab F, Farokhi M, Zaminy A, et al. A biosynthetic nerve guide conduit based on silk/SWNT/fibronectin nanocomposite for peripheral nerve regeneration. 2013.

[34] Firme CP, Bandaru PR. Toxicity issues in the application of carbon nanotubes to biological systems. Nanomedicine: Nanotechnology, Biology and Medicine. 2010;6(2):245-256.

[35] Chaki NK, Vijayamohanan K. Self-assembled monolayers as a tunable platform for biosensor applications. Biosensors and Bioelectronics. 2002;17(1):1-12.

[36] Ghodselahi T, Hoornam S, Vesaghi M, et al. Fabrication Localized Surface Plasmon Resonance sensor chip of gold nanoparticles and detection lipase–osmolytes interaction. Applied Surface Science. 2014;314:138-144.

[37] Canovi M, Lucchetti J, Stravalaci M, et al. Applications of surface plasmon resonance (SPR) for the characterization of nanoparticles developed for biomedical purposes. Sensors. 2012;12(12):16420-16432.

[38] Lee EG, Park KM, Jeong JY, et al. Carbon nanotube-assisted enhancement of surface plasmon resonance signal. Analytical biochemistry. 2011;408(2):206-211.

[39] Cedervall T, Lynch I, Lindman S, et al. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proceedings of the National Academy of Sciences. 2007;104(7):2050-2055.

[40] Xiu P, Zhou B, Qi W, et al. Manipulating biomolecules with aqueous liquids confined within single-walled nanotubes. Journal of the American Chemical Society. 2009;131(8):2840-2845.

[41] Caracciolo G, Palchetti S, Colapicchioni V, et al. Stealth effect of biomolecular corona on nanoparticle uptake by immune cells. Langmuir. 2015;31(39):10764-10773.