کاربرد تئوری محلول جذب شده ایده آل برای بررسی جداسازی گازهای دی اکسید کربن/ نیتروژن بر روی کربن متخلخل دوپه شده با نیتروژن تهیه شده از نانوپلی انیلین

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دکترا، دانشکده مهندسی شیمی، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

2 استاد، دانشکده مهندسی شیمی، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

چکیده

در این مطالعه کربن متخلخل دوپه شده با نیتروژن با استفاده از پلیمر پلی آنیلین به عنوان پیش ساز و عامل فعالساز KOH در دمای فعالسازی °C 800 سنتز شد. ساختار پلیمر و جاذب سنتز شده به وسیله‌ی میکروسکوپ نیروی اتمی، آنالیز جذب-واجذب نیتروژن، طیف‌سنجی مادون‌قرمز و میکروسکوپ الکترونی روبشی مورد ارزیابی قرار گرفت. جذب سطحی هر یک از گازهای CO2 و N2 به صورت جداگانه بر روی جاذب بررسی شده و نتایج حاصل با ایزوترم سیپس مورد برازش قرار گرفت. سطح ویژه جاذب سنتز شده m2/g 723 و میزان جذب CO2 در شرایط فشار 1بار و دمای K 298 مقدار mmol/g 90/1 بوده است. گزینش‌پذیری CO2 نسبت به N2 ( ) با استفاده از تئوری محلول جذب شده ایده آل و بر روی کربن فعال دوپه شده در شرایط فشار 1بار، دمای K 298و ترکیب درصد CO2: N2= 50:50 مقدار 02/3 به دست آمده است. با استفاده از رابطه کلازیوس-کلاپیرون گرمای ایزواستریک محاسبه شد و نتایج ‌بدست آمده گرمازا بودن و نیز جذب فیزیکی فرایند جذب سطحی گازها را تأیید می‌کند. همچنین مقادیر بیشتر گرمای جذب برای گاز CO2، برهم‌کنش قوی‌تر میان مولکول‌های آن با سطح جاذب دوپه شده با نیتروژن را نشان می دهد. نتایج حاصل از میزان جذب گاز و نیز گرمای جذب نشان داد که جاذب سنتز شده می تواند به عنوان جاذبی مطلوب در فرایندهای سیکلی مانند فرایند PSA کاربرد داشته باشد.

کلیدواژه‌ها


[1] L. Wang, L. Rao, B. Xia, L. Wang, L. Yue, Y. Liang, H. DaCosta,X. Hu, Highly efficient CO2 adsorption by nitrogen-doped porous carbons synthesized with low-temperature sodium amide activation. Carbon 130 (2018), 31-40.
[2] F. Valdebenito, R. García, K. Cruces, G. Ciudad, G. Chinga-Carrasco,Y. Habibi, CO2 Adsorption of Surface-Modified Cellulose Nanofibril Films Derived from Agricultural Wastes. ACS Sustain. Chem. Eng. 6 (2018), 12603-12612.
[3] S. RODRÍGUEZ-GARCÍA, R. Santiago, D. López-Díaz, M. D. Merchán, M. M. Velázquez, J. L. G. Fierro,J. Palomar, The role of the structure of graphene oxide sheets on the CO2 adsorption properties of nanocomposites based on graphene oxide and Polyaniline or Fe3O4-nanoparticles. ACS Sustain. Chem. Eng. 7 (2019), 12464-12473.
[4] K. Rahimi, S. Riahi, M. Abbasi,Z. Fakhroueian, Modification of multi-walled carbon nanotubes by 1, 3-diaminopropane to increase CO2 adsorption capacity. J. environ. Manag. 242 (2019), 81-89.
[5] Y. Wang, T. Du, X. Fang, H. Jia, Z. Qiu,Y. Song, Synthesis of CO2-adsorbing ZSM-5 zeolite from rice husk ash via the colloidal pretreatment method. Mater. Chem. Phys. 232 (2019), 284-293.
[6] F. Chu, L. Yang, X. Du,Y. Yang, Mass transfer and energy consumption for CO2 absorption by ammonia solution in bubble column. Appl. energy 190 (2017), 1068-1080.
[7] I. M. Bernhardsen,H. K. Knuutila, A review of potential amine solvents for CO2 absorption process: Absorption capacity, cyclic capacity and pKa. Int. J. Greenh. Gas Con. 61 (2017), 27-48.
[8] Z. Zhang, J. Cai, F. Chen, H. Li, W. Zhang,W. Qi, Progress in enhancement of CO2 absorption by nanofluids: A mini review of mechanisms and current status. Renew. Energy 118 (2018), 527-535.
[9] B. Prasad, R. M. Thakur, B. Mandal,B. Su, Enhanced CO2 separation membrane prepared from waste by-product of silk fibroin. J. Memb. Sci. 587(2019), 117170.
[10] G. Crini, E. Lichtfouse, L. D. Wilson,N. Morin-Crini, Conventional and non-conventional adsorbents for wastewater treatment. Environ. Chem. Lett. 17 (2019), 195-213.
[11] Y. Chiang, R. Juang, Surface modifications of carbonaceous materials for carbon dioxide adsorption: A review. J. Taiwan Inst. Chem. Eng.71 (2017), 214-234.
[12] C. Song, Q. Liu, N. Ji, S. Deng, J. Zhao, Y. Li, Y. Song,H. Li, Alternative pathways for efficient CO2 capture by hybrid processes—a review. Renew. Sustain. Energy Rev. 82 (2018), 215-231.
[13] L. Estevez, D. Barpaga, J. Zheng, S. Sabale, R. L. Patel, J.-G. Zhang, B. P. McGrail,R. K. Motkuri, Hierarchically porous carbon materials for CO2 capture: the role of pore structure. Ind. Eng. Chem. Res. 57 (2018), 1262-1268.
[14] M. Niu, H. Yang, X. Zhang, Y. Wang,A. Tang, Amine-impregnated mesoporous silica nanotube as an emerging nanocomposite for CO2 capture. ACS Appl. Mater. Interfaces 8 (2016), 17312-17320.
[15] J. W. To, J. He, J. Mei, R. Haghpanah, Z. Chen, T. Kurosawa, S. Chen, W.-G. Bae, L. Pan,J. B.-H. Tok, Hierarchical N-doped carbon as CO2 adsorbent with high CO2 selectivity from rationally designed polypyrrole precursor. J. Am. Chem. Soc. 138 (2016), 1001-1009.
[16] A. Silvestre-Albero, S. Rico-Francés, F. Rodríguez-Reinoso, A. M. Kern, M. Klumpp, B. J. Etzold,J. Silvestre-Albero, High selectivity of TiC-CDC for CO2/N2 separation. Carbon 59 (2013), 221-228.
[17] J. Yang, L. Yue, B. Lin, L. Wang, Y. Zhao, Y. Lin, K. Chang, H. DaCosta,X. Hu, CO2 Adsorption of nitrogen-doped carbons prepared from nitric acid preoxidized petroleum coke. Energy Fuels 31 (2017), 11060-11068.
[18] M. Sevilla, P. Valle‐Vigón, A. B. Fuertes, N‐doped polypyrrole‐based porous carbons for CO2 capture. Adv. Funct. Mater. 21 (2011), 2781-2787.
[19] J. Han, G. Xu, B. Ding, J. Pan, H. Dou,D. R. MacFarlane, Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors. J. Mat. Chem. A 2 (2014), 5352-5357.
[20] L. Li, X.-F. Wang, J.-J. Zhong, X. Qian, S.-L. Song, Y.-G. Zhang,D.-H. Li, Nitrogen-enriched porous polyacrylonitrile-based carbon fibers for CO2 capture. Ind. Eng. Chem. Res. 57 (2018), 11608-11616.
[21] J. He, J. W. To, P. C. Psarras, H. Yan, T. Atkinson, R. T. Holmes, D. Nordlund, Z. Bao,J. Wilcox, Tunable Polyaniline‐Based Porous Carbon with Ultrahigh Surface Area for CO2 Capture at Elevated Pressure. Adv. Energy Mater. 6 (2016), 1502491.
[22] Z. Rozlivkova, M. Trchová, M. Exnerová,J. Stejskal, The carbonization of granular polyaniline to produce nitrogen-containing carbon. Synth. Met. 161 (2011), 1122-1129.
[23] J. Song, T. Guo, W. Ding, M. Yao, F. Bei, X. Zhang, J. Huang,X. Fang, Study on thermal behavior and kinetics of Al/MnO 2 poly (vinylidene fluorine) energetic nanocomposite assembled by electrospray. RSC Adv. 9 (2019), 25266-25273.
[24] M. B. Ahmed, M. A. H. Johir, J. L. Zhou, H. H. Ngo, L. D. Nghiem, C. Richardson, M. A. Moni,M. R. Bryant, Activated carbon preparation from biomass feedstock: Clean production and carbon dioxide adsorption. J. Clean. Prod. 225 (2019), 405-413.
[25] S. Deng, H. Wei, T. Chen, B. Wang, J. Huang,G. Yu, Superior CO2 adsorption on pine nut shell-derived activated carbons and the effective micropores at different temperatures. Chem. Eng. J. 253 (2014), 46-54.
[26] J. Chen, J. Yang, G. Hu, X. Hu, Z. Li, S. Shen, M. Radosz,M. Fan, Enhanced CO2 capture capacity of nitrogen-doped biomass-derived porous carbons. ACS Sustain. Chem. Eng.4 (2016), 1439-1445.
[27] B. Adeniran,R. Mokaya, Compactivation: A mechanochemical approach to carbons with superior porosity and exceptional performance for hydrogen and CO2 storage. Nano Energy 16 (2015), 173-185.
[28] X. Zhang, R. Chan-Yu-King, A. Jose,S. K. Manohar, Nanofibers of polyaniline synthesized by interfacial polymerization. Synth. Met. 145 (2004), 23-29.
[29] P. Saini,M. Arora, Formation mechanism, electronic properties & microwave shielding by nano-structured polyanilines prepared by template free route using surfactant dopants. J. Mater. Chem. A 1 (2013), 8926-8934.
[30] F. Xiao, C. Qian, M. Guo, J. Wang, X. Yan, H. Li,L. Yue, Anticorrosive durability of zinc-based waterborne coatings enhanced by highly dispersed and conductive polyaniline/graphene oxide composite. Prog. Org. Coat. 125 (2018), 79-88.
[31] M. Peyravi, Synthesis of nitrogen doped activated carbon/polyaniline material for CO2 adsorption. Polym. Adv. Technol. 29 (2018), 319-328.
[32] M.-J. López-Muñoz, A. Arencibia, L. Cerro, R. Pascual,Á. Melgar, Adsorption of Hg (II) from aqueous solutions using TiO2 and titanate nanotube adsorbents. Appl. Surf. Sci. 367 (2016), 91-100.
[33] A. L. Myers,J. M. Prausnitz, Thermodynamics of mixed‐gas adsorption. AlChE J. 11 (1965), 121-127.
[34] D. Do Duong, Adsorption Analysis: Equilibria And Kinetics (With Cd Containing Computer Matlab Programs), World Scientific, London, 1998.
[35] R. S. Pillai, S. A. Peter,R. V. Jasra, Adsorption of carbon dioxide, methane, nitrogen, oxygen and argon in NaETS-4. Microporous and Mesoporous Mater. 113 (2008), 268-276.
[36] B. Chang, W. Shi, H. Yin, S. Zhang,B. Yang, Poplar catkin-derived self-templated synthesis of N-doped hierarchical porous carbon microtubes for effective CO2 capture. Chem. Eng. J. 358 (2019), 1507-1518.
[37] A. Alabadi, H. A. Abbood, Q. Li, N. Jing,B. Tan, Imine-Linked Polymer Based Nitrogen-Doped Porous Activated Carbon for Efficient and Selective CO 2 Capture. Scientific reports 6 (2016), 38614.
[38] L. Liu, Q.-F. Deng, T.-Y. Ma, X.-Z. Lin, X.-X. Hou, Y.-P. Liu,Z.-Y. Yuan, Ordered mesoporous carbons: citric acid-catalyzed synthesis, nitrogen doping and CO 2 capture. Journal of Materials Chemistry 21 (2011), 16001-16009.
[39] J. Yu, M. Guo, F. Muhammad, A. Wang, F. Zhang, Q. Li,G. Zhu, One-pot synthesis of highly ordered nitrogen-containing mesoporous carbon with resorcinol–urea–formaldehyde resin for CO2 capture. Carbon 69 (2014), 502-514.
[40] A. Heidari, H. Younesi, A. Rashidi,A. A. Ghoreyshi, Evaluation of CO2 adsorption with eucalyptus wood based activated carbon modified by ammonia solution through heat treatment. Chem. Eng. J. 254 (2014), 503-513.
[41] C. S. Araújo, I. L. Almeida, H. C. Rezende, S. M. Marcionilio, J. J. Léon,T. N. de Matos, Elucidation of mechanism involved in adsorption of Pb (II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchem. J. 137 (2018), 348-354.
[42] W. Rudzinski,D. H. Everett, Adsorption of gases on heterogeneous surfaces. Academic Press, London, 2012, 64-66.
[43] M. M. Maroto-Valer, Z. Lu, Y. Zhang,Z. Tang, Sorbents for CO2 capture from high carbon fly ashes. Waste Manage. (Oxford) 28 (2008), 2320-2328.
[44] S. Khalili, B. Khoshandam,M. Jahanshahi, Optimization of production conditions for synthesis of chemically activated carbon produced from pine cone using response surface methodology for CO 2 adsorption. RSC Adv. 5 (2015), 94115-94129.
[45] Z. Tian, J. Huang, X. Zhang, G. Shao, Q. He, S. Cao,S. Yuan, Ultra-microporous N-doped carbon from polycondensed framework precursor for CO2 adsorption. Micropor. Mesopor. Mater. 257 (2018), 19-26.
[46] J. Chen, J. Yang, G. Hu, X. Hu, Z. Li, S. Shen, M. Radosz,M. Fan, Enhanced CO2 capture capacity of nitrogen-doped biomass-derived porous carbons. ACS Sustain. Chem. Eng. 4 (2016), 1439-1445.
[47] R. Bai, M. Yang, G. Hu, L. Xu, X. Hu, Z. Li, S. Wang, W. Dai,M. Fan, A new nanoporous nitrogen-doped highly-efficient carbonaceous CO2 sorbent synthesized with inexpensive urea and petroleum coke. Carbon 81 (2015), 465-473.
[48] C. Pevida, T. Drage,C. Snape, Silica-templated melamine–formaldehyde resin derived adsorbents for CO2 capture. Carbon 46 (2008), 1464-1474.
[49] J. Yu, M. Guo, F. Muhammad, A. Wang, F. Zhang, Q. Li,G. Zhu, One-pot synthesis of highly ordered nitrogen-containing mesoporous carbon with resorcinol–urea–formaldehyde resin for CO2 capture. Carbon 69 (2014), 502-514.
[50] J. Wang, I. Senkovska, M. Oschatz, M. R. Lohe, L. Borchardt, A. Heerwig, Q. Liu,S. Kaskel, Highly porous nitrogen-doped polyimine-based carbons with adjustable microstructures for CO 2 capture. Journal of Materials Chemistry A 1 (2013), 10951-10961.