The Study of Nanostructure, Magnetic Properties and Photocatalytic Behavior of Fe3O4/Ag Nanocomposites Synthesized by Microwave Method

Document Type : Research Article

Authors

1 Department of mathematics &Physics, Science Faculty, Arak Branch, Islamic Azad University, Arak, Iran

2 Department of Science, Arak University of Technology, Arak, Iran

/amnc.2020.9.34.2

Abstract

We prepared samples including nanoparticles of Fe3O4 via co-precipitation method with microwave heating using water and ethylene glycol as solvent. The procedure was repeated with various natural surfactants. XRD and SEM analysis was performed to determine the nanostructural characteristics of nanoparticles. SEM analysis disclosed that the type of surfactant and solvent will affect the nanostructures. In the next stage, Fe3O4/Ag nanocomposite was prepared using magnetite nanoparticles and AgNO3 by microwave method and its nanostructure was defined by SEM and TEM analysis. The mean diameter was determined between 40-55 nm from SEM software and 44-64 nm by Motic software for particles of all samples. Likewise, the purity of Fe3O4 nanoparticles and prepared nanocomposite were documented by FT-IR spectrometry. All the products had pure nanoparticles of Ag and Fe3O4 which was agreed with XRD results. To evaluate the magnetic parameters of samples, VSM analysis were done. Hysteresis curves disclosed that all the products have superparamagnetic properties. We also assessed the photocatalytic potential of prepared nanocomposites using methyl orange and congo red solutions under UV radiation and the effect of concentration of absorbent, pH of solutions and the time of irradiation on the color removing was investigated. This study confirms that these Fe3O4/Ag nanocomposites can be used as recyclable photo-catalysts for water refinery in home and industries. The best result for color removing was for 0.9 gr/lit absorbent, pH=2 and t= 80 min for irradiation.

Keywords


[1] Hou Y., Chu W., Ma M., Carbonaceous and nitrogenous disinfection by-product formation in the surface and ground water treatment plants using Yellow River as water source, Journal of Environmental Sciences, 24, 7(2012), 1204-1209.
[2] Xia H., Cui B., Zhou J., Zhang L., Zhang J., Guo X. et al, Synthesis and characterization of Fe3O4@C@Ag nanocomposites and their antibacterial performance, Applied Surface Science, 257, 22(2011), 9397-9402.
[3] Zhang, Yanyang, Bing W., Hui X., Hui L., Minglu W., Yixuan H., Bingcai P., Nanomaterials-enabled water and wastewater treatment, Nano Impact, 3(2016), 22-39.
[۴] زینال زاده داریوش، رضایی کلانتری روشنک، نبی زاده نودهی رامین، اسرافیلی علی، علی محمدی محمود، مکمل عادل، ﻣﻘﺎﯾﺴﻪ ﮐﺎراﯾﯽ نانو ذرات ﻣﻐﻨﺎﻃﯿﺴﯽ ﻧﻘﺮه ونانو ذرات ﻧﻘﺮه ﻣﻐﻨﺎﻃﯿﺴﯽ اﺻﻼح ﺷﺪه ﺑﺎ ﻻﯾﻪ ﮐﺮﺑﻨﯽ در گندزدایی پساب فاضلاب ﺷﻬﺮی، مجله سلامت و بهداشت، جلد ۱، (۱۳۹۴)۶، ۱۸-۷.
[5] Pinto RJ., Marques PA., Neto CP., Trindade T., Daina S., Sadocco P., Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers, Acta Biomaterialia, 5, 6(2009), 2279-2289.
[6] Fajaroh F., Nazriati N., Factors influence the structural and magnetic properties of Fe3O4-Ag nanocomposites synthesized by reduction method, IOP Conf. Series: Materials Science and Engineering, 202(2017), 012064-012069.
[7] Ki HY., Kim JH., Kwon SC., Jeong SH., A study on multifunctional wool textiles treated with nano-sized Silver, J. Mater. Sci., 42(2007), 8020-8024.
[8] Matyias E., Bacciarelli A., Rybicki E., Szynkowska MI., Kolodziejczyk M., Antibacterial properties of silver finished textile, Fibers & Textiles in Eastern Europe, 16, 5, 70(2008), 101-107.
[9] Chang Q., Yan L., Chen M., He H., Qu J., Bactericidal mechanism of Ag/Al2O3 against Escherichia coli, Langmuir, 23, 22(2007), 11197-11199.
[10] Xueping Z., Wanquan J., Xinglong G., Zhong Z., Sonochemical synthesis and characterization of magnetic separable Fe3O4/Ag composites and its catalytic properties, Journal of Alloys and Compounds, 508(2010), 400-405.
[11] Dong-Hui Z., Guo-Dong L., Ji-Xue L., Jie-Sheng C., One-pot synthesis of Ag- Fe3O4 nanocomposite: a magnetically recyclable and efficient catalyst for epoxidation of styrene, Chem. Commun., 29(2008), 3414-3416.
[12] Wanquan J., Yufeng Z.,Yanli Z., Shouhu X., Xinglong G., Superparamagnetic Ag@Fe3O4 core–shell nanospheres: fabrication, characterization and application as reusable nanocatalysts, Dalton Trans, 41(2012), 4594-4601.
[13] Zheng B., Zhang M., Xiao D., Jin Y., Choi MM., Fast microwave synthesis of Fe3O4 and Fe3O4/Ag magnetic nanoparticles using Fe2+ as precursor, Inorganic Materials, 46, 10(2010), 11006-11011.
[14] Mi H., Xu Y., Shi W., Yoo H-d., Chae OB., Oh SM., Flocculant-assisted synthesis of Fe2O3/Carbon composites for superior lithium rechargeable batteries, Materials Research Bulletin, 47, 1(2012), 152-155.
[15] Lu C. Y., Puig T., Obradors X., Ricart S., Ros, J., Ultra-fast microwave-assisted reverse microemulsion synthesis of Fe3O4@SiO2 core–shell nanoparticles as a highly recyclable silver nanoparticle catalytic platform in the reduction of 4-nitroaniline, RSC Adv., 6 (2016), 88762-88769.
[16] Shixia Zh., Chunyan L., Heyun T., Chenguang M., Hongling L., Jie L., Mingxue L., Synthesis, characterization and dye removal behavior of core–shell–shell Fe3O4/Ag/Polyoxometalates ternary nanocomposites, Nanomaterials, 9 (2019), 1254-1267. [17] You Li A., Kaushik M., Li C.J., Moores A., Microwave-assisted synthesis of magnetic Carboxymethyl Cellulose-Embedded Ag–Fe3O4 nanocatalysts for selective carbonyl hydrogenation, ACS Sustainable Chem. Eng., 4, 3 (2016), 965-973.
[18] Karbasi M., Maghazeii F., Ghanbari D., Magnetic investigation of microwave synthesized and thermal stable Polyvinyl Alcohol-Cobalt Ferrite nanocomposites, Journal of Nanostructures, 9, 2(2019), 365-375.
[19] Maghazeii F., Ghanbari D., Lotfi L., The study of photocatalytic behavior of Carbon-ZnS nanocomposites prepared with microwave co- precipitation method, accepted in Journal of Nanostructures (in press), (2020).
[۲۰] مغازۀ فرناز، باقرنژاد مینا، قنبری داوود، مطالعه نانوساختار و خواص مغناطیسی نانوکامپوزیت‏های هگزافریت باریم / استرانسیوم تهیه شده به روش مایکروویو، نشریه مواد پیشرفته و پوشش‌های نوین،(۱۳۹۷)۲۶، ۱۸۲۵-۱۸۱۵.