Hybrid Pizo-Triboelectric Energy Nanogenerator from Woollen fabric and PVDF/BaTiO3 Nanofibrous Layer

Document Type : Research Article

Authors

1 Amirkabir University of Technology

2 Institute for Advanced Textile Materials and Technologies, School of Materials and Advanced Process, Amirkabir University of Technology, Tehran, Iran.

/amnc.2020.9.34.3

Abstract

Harvesting of wasted energies using mechanical to electrical energy nanogenerators has become a major branch of energy research area due to the global energy concerns. Piezoelectric and triboelectric mechanisms are between the two most widely used methods in this field. In this study, different combinations of fibrous nanogenerators including PVDF nanofibers and PVDF / BaTiO3 composite nanofibers with wool fabrics consist of three types of weft knitted fabric and combed wool fibers were prepared, due to their promising position in the triboelectric series. Different configuration of layers were also set to optimize the layer composition for the best electrical output. The electrical output voltage per unit area of different samples were measured after the contact - separation mode of electrification for each sample. Results showed that the arc-shape layer deposition has the best triboelectric layer arrangement to achieve the optimized electrical output at a specified force with the highest output value of 4.35(V/cm2), where the output of PVDF piezoelectric layer was only 0.475(mV/cm2). For a given force, the output of the triboelectric nanogenerator was more than 9000 times higher than that of the pure PVDF/BaTiO3 piezoelectric nanogenerator. These results teach us a first step towards the fabrication of self-chargeable wearable microelectronic devices.

Keywords


[1] Ji SH, Lee W, Yun JS. All-in-One Piezo-Triboelectric Energy Harvester Module Based on Piezoceramic Nanofibers for Wearable Devices. ACS Applied Materials & Interfaces. 2020;12(16):18609-16.
[2] Kumar PS, Sundaramurthy J, Sundarrajan S, Babu VJ, Singh G, Allakhverdiev SI, et al. Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation. Energy & Environmental Science. 2014;7(10):3192-222.
[3] Harb A. Energy harvesting: State-of-the-art. Renewable Energy. 2011;36(10):2641-54.
[4] Sirohi J, Chopra I. Fundamental understanding of piezoelectric strain sensors. Journal of intelligent material systems and structures. 2000;11(4):246-57.
[5] Lee SG, Ha J-W, Sohn E-H, Park IJ, Lee S-BJASS. Enhancement of polar crystalline phase formation in transparent PVDF-CaF2 composite films. 2016;390:339-45.
[6] Karan SK, Mandal D, Khatua BBJN. Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester. 2015;7(24):10655-66.
[7] Cao X, Ma J, Shi X, Ren ZJASS. Effect of TiO2 nanoparticle size on the performance of PVDF membrane. 2006;253(4):2003-10.
[8] سمنانی رهبر را, کلانتری ب, محدث مجتهدی م. بررسی رفتار تبلور در الیاف نانو کامپوزیت پلی‌پروپیلن/نانو صفحات گرافن بخش اول- سینتیک تبلور همدما. مواد پیشرفته و پوشش های نوین. 2019;7(28):2022-35.
[9] Sharifisamani E, Mousazadegan F, Bagherzadeh R, Latifi M. PEG-PLA-PCL based electrospun yarns with curcumin control release property as suture. Polymer Engineering & Science. 2020;60(7):1520-9.
[10] نوری م, مختاری ج, اصلاح س, قربانپور ص. اصلاح سطحی الیاف ابریشم توسط نانو لوله‌های کربنی فعال شده. مواد پیشرفته و پوشش های نوین. 2018;7(25):1763-72.
[11] Azmi S, Hosseini Varkiani S-M, Latifi M, Bagherzadeh R. Tuning energy harvesting devices with different layout angles to robust the mechanical-to-electrical energy conversion performance. Journal of Industrial Textiles.0(0):1528083720928822.
[12] Saveh-Shemshaki N, Bagherzadeh R, Latifi M. Electrospun metal oxide nanofibrous mat as a transparent conductive layer. Organic Electronics. 2019;70:131-9.
[13] Sorayani Bafqi MS, Latifi M, Sadeghi A-H, Bagherzadeh R. Expected lifetime of fibrous nanogenerator exposed to cyclic compressive pressure. Journal of Industrial Textiles.0(0):1528083720915835.
[14] Sorayani Bafqi MS, Bagherzadeh R, Latifi M. Nanofiber alignment tuning: An engineering design tool in fabricating wearable power harvesting devices. Journal of Industrial Textiles. 2017;47(4):535-50.
[15] Guan X, Chen H, Xia H, Fu Y, Yao J, Ni Q-Q. Flexible energy harvester based on aligned PZT/SMPU nanofibers and shape memory effect for curved sensors. Composites Part B: Engineering. 2020;197:108169.
[16] Queraltó A, Frohnhoven R, Mathur S, Gómez A. Intrinsic piezoelectric characterization of BiFeO3 nanofibers and its implications for energy harvesting. Applied Surface Science. 2020;509:144760.
[17] Gul H, Fasihullah K, Arshad H, Shawkat A, Jinho B, Chong Hyun L. A flat-panel-shaped hybrid piezo/triboelectric nanogenerator for ambient energy harvesting. Nanotechnology. 2017;28(17):175402.
[18] Ejaz M, Puli VS, Elupula R, Adireddy S, Riggs BC, Chrisey DB, et al. Core-shell structured poly(glycidyl methacrylate)/BaTiO3 nanocomposites prepared by surface-initiated atom transfer radical polymerization: A novel material for high energy density dielectric storage. Journal of Polymer Science Part A: Polymer Chemistry. 2015;53(6):719-28.
[19] Kashfi M, Fakhri P, Amini B, Yavari N, Rashidi B, Kong L, et al. A novel approach to determining piezoelectric properties of nanogenerators based on PVDF nanofibers using iterative finite element simulation for walking energy harvesting. Journal of Industrial Textiles.0(0):1528083720926493.
[20] Singh HH, Khare N. Flexible ZnO-PVDF/PTFE Based Piezo-Tribo Hybrid Nanogenerator. Nano Energy. 2018.
[21] Bafqi MSS, Bagherzadeh R, Latifi M. Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency. Journal of Polymer Research. 2015;22(7):130.
[22] Tiwari S, Gaur A, Kumar C, Maiti P. Electrospun hybrid nanofibers of poly(vinylidene fluoride) and functionalized graphene oxide as a piezoelectric energy harvester. Sustainable Energy & Fuels. 2020;4(5):2469-79.
[23] Abolhasani MM, Naebe M, Hassanpour Amiri M, Shirvanimoghaddam K, Anwar S, Michels JJ, et al. Hierarchically Structured Porous Piezoelectric Polymer Nanofibers for Energy Harvesting. Advanced Science. 2020;7(13):2000517.
[24] Akgun M. Surface roughness properties of wool woven fabrics after abrasion. The Journal of The Textile Institute. 2016;107(8):1056-67.
[25] Sabry RS, Hussein AD. PVDF: ZnO/BaTiO3 as high out-put piezoelectric nanogenerator. Polymer Testing. 2019;79:106001.
[26] Mendes SF, Costa CM, Caparros C, Sencadas V, Lanceros-Méndez S. Effect of filler size and concentration on the structure and properties of poly(vinylidene fluoride)/BaTiO 3 nanocomposites. Journal of Materials Science. 2012;47(3):1378-88.