Effect of ZnO seed layer on the growth of CdS nanostructures for optoelectronic applications

Document Type : Research Article

Authors

Materials and Energy Research Center; Semiconductor Department

amnc.2021.9.35.5

Abstract

In this study, the influence of the ZnO seed layer on the growth of CdS nanostructures using chemical bath deposition method was studied. Applied ZnO seed layer led to change the surface morphology of deposited CdS on glass substrate from particle shape to nanosheet. The results indicated an improvement in the homogeneity and uniformity of the grown CdS nanostructures on
ZnO seed layer, which can be due to the low lattice mismatch between ZnO and CdS structures. This change led to variation in crystal structure from cubic to hexagonal. The UV-Vis spectroscopy illustrated the higher absorption coefficient for CdS nanosheet related to CdS particle shape due to the high specific surface area. The calculated band gap of this sample by Tuac plot showed the value of 2.62 eV, which was increased compared to the cadmium sulfide with the bulk structure, which is due to the improved crystal quality of nanosheets. The results showed improved optoelectrical properties of optical detectors based on cadmium sulfide nanoparticles compared to the other samples.

Keywords


 [1] K. Liu, M. Sakurai, M. Aono, ZnO-based ultraviolet photodetectors, Sensors. 10 (2010) 8604–8634.
https://doi.org/10.3390/s100908604.
[2] R. Ordonez, Novel control technique for cadmium sulfide Chemical Bath Disposition using real time
monitoring of cadmium ion molarity, The University
of Texas at El Paso, 2010. http://0-search.proquest.
com.library.nsu.edu/docview/1552484809?account
id=28204.
[3] M. Jordan, A comparative evaluation of cadmium sulfide deposition techniques, The University
of Texas at El Paso, 1993. http://0-search.proquest.
com.library.nsu.edu/docview/304098778?account
id=28204.
[4] G. Li, Y. Jiang, Y. Zhang, X. Lan, T. Zhai, G.C.
Yi, High-performance photodetectors and enhanced
field-emission of CdS nanowire arrays on CdSe single-crystalline sheets, J. Mater. Chem. C. 2 (2014)
8252–8258. https://doi.org/10.1039/c4tc01503g.
[5] V. Singh, P.K. Sharma, P. Chauhan, Synthesis
of CdS nanoparticles with enhanced optical properties, Mater. Charact. 62 (2011) 43–52. https://doi.
org/10.1016/j.matchar.2010.10.009.
[6] S. Chaure, N.B. Chaure, R.K. Pandey, A.K. Ray,
Stoichiometric effects on optical properties of cadmium sulphide quantum dots, IET Circuits, Devices
Syst. 1 (2007) 215–219. https://doi.org/10.1049/ietcds:20070048.
[7] M.A. Mahdi, J.J. Hassan, S.S. Ng, Z. Hassan,
N.M. Ahmed, Synthesis and characterization of single-crystal CdS nanosheet for high-speed photodetection, Phys. E Low-Dimensional Syst. Nanostructures.
44 (2012) 1716–1721. https://doi.org/10.1016/j.
physe.2012.05.003.
[8] Q. An, X. Meng, G. Liu, L. Hong, Annealing of
the superlong CdS nanotubes for enhanced performance in fully nanostructured photodetector, Mater.
Lett. 161 (2015) 751–754. https://doi.org/10.1016/j.
matlet.2015.09.083.
[9] J. Li, Y. Zhu, M. Li, H. Cai, H. Ding, N. Pan, X.
Wang, One-step fabrication of CdS nanoflake arrays
and its application for photodetector, Optik (Stuttg).
169 (2018) 190–195. https://doi.org/10.1016/j.
ijleo.2018.05.091.
[10] A. Djelloul, M. Adnane, Y. Larbah, M. Zerdali,
C. Zegadi, A. Messaoud, Effect of annealing on the
properties of nanocrystalline CdS thin films prepared
by CBD method, J. Nano- Electron. Phys. 8 (2016)
1–7. https://doi.org/10.21272/jnep.8(2).02005.
[11] M. Taherkhani, N. Naderi, P. Fallahazad, M.J.
Eshraghi, A. Kolahi, Development and Optical Properties of ZnO Nanoflowers on Porous Silicon for
Photovoltaic Applications, J. Electron. Mater. (2019).
https://doi.org/10.1007/s11664-019-07484-0.
[12] R. Brown, Handbook of Thin Film Technology,
1970.
[13] S. Rondiya, A. Rokade, A. Funde, M. Kartha,
H. Pathan, S. Jadkar, Synthesis of CdS thin films at
room temperature by RF-magnetron sputtering and
study of its structural, electrical, optical and morphology properties, Thin Solid Films. 631 (2017) 41–49.
https://doi.org/10.1016/j.tsf.2017.04.006.
[14] L. Li, S. Yang, X. Zhang, L. Wang, Z. Jiang, Q.
Lin, C. Wang, F. Han, N. Peng, Single CdS nanowire photodetector fabricated by FIB, Microelectron.
Eng. 126 (2014) 27–30. https://doi.org/10.1016/j.
mee.2014.03.046.
[15] M.A. Mahdi, J.J. Hassan, N.M. Ahmed, S.S.
Ng, Z. Hassan, Growth and characterization of CdS
single-crystalline micro-rod photodetector, Superlattices Microstruct. 54 (2013) 137–145. https://doi.
org/10.1016/j.spmi.2012.11.005.
[16] L. Li, Z. Lou, G. Shen, Hierarchical CdS Nanowires Based Rigid and Flexible Photodetectors with
Ultrahigh Sensitivity, ACS Appl. Mater. Interfaces.
7 (2015) 23507–23514. https://doi.org/10.1021/
acsami.5b06070.
[17] N. Naderi, M.R. Hashim, Nanocrystalline
SiC sputtered on porous silicon substrate after annealing, Mater. Lett. 97 (2013) 90–92. https://doi.
org/10.1016/j.matlet.2013.01.102.
[18] S. Kumar, P. Sharma, V. Sharma, Structural transition in II-VI nanofilms: Effect of molar ratio on structural, morphological, and optical properties, J. Appl.
Phys. 111 (2012). https://doi.org/10.1063/1.4724347.
[19] M.A. Barote, A.A. Yadav, E.U. Masumdar, Synthesis, characterization and photoelectrochemical
properties of n-CdS thin films, Phys. B Condens. Mat ter. 406 (2011) 1865–1871. https://doi.org/10.1016/j.
physb.2011.02.044.
[20] M.E. Calixto, P.J. Sebastian, Comparison of
the properties of chemical vapor transport deposited
CdS thin films using different precursors, Sol. Energy Mater. Sol. Cells. 59 (1999) 65–74. https://doi.
org/10.1016/S0927-0248(99)00032-X.
[21] J. Li, Y. Zhu, M. Li, H. Cai, H. Ding, N. Pan, X.
Wang, One-step fabrication of CdS nanoflake arrays
and its application for photodetector, Optik (Stuttg).
169 (2018) 190–195. https://doi.org/10.1016/j.
ijleo.2018.05.091.