Thermal stability and thermal degradation of epoxy nanocomposites in the presence of full vulcanized elastomeric nanoparticles

Document Type : Research Article

Authors

1 Polymer Engineering Group, Faculty of Engineering, Islamic Azad University, South Tehran Branch.

2 Department of Polymer Engineering, South Tehran Branch, Islamic Azad University.

3 Department of Polymer, Islamic Azad University, South Tehran Branch.

4 polymer faculty,south Tehran Branch,Islamic Azad University,Tehran,Iran

5 Department of Chemistry, Faculty of Basic Sciences, Islamic Azad University, Ghods Branch, Tehran, Iran

amnc.2021.10.37.7

Abstract

In this research, the thermal stability and thermal degradation of epoxy resin in the presence of different amounts (0،0.5،1،1.5) by weight percent of elastomeric nanoparticles have been investigated using Thermal Gravimetric Analysis. The results of derivative thermogravimetrically analysis (DTG), showed that at constant heating rate, by adding 0.5 and 1 wt% of elastomeric nanoparticles to the epoxy resin matrix, the maximum degradation temperature increases and the mechanism of thermal degradation of epoxy resin and epoxy nanocomposites was single step. 1% nanocomposite sample showed highest maximum degradation temperature and also with increasing the heating rate, the temperature of 95% degradation (T95)of pure epoxy resin and epoxy nanocomposite samples increased . On the other hand ,this temperature for 1.5% and 0.5 and 1% nanocomposites was decreased at first and then increased. The activation energy was evaluated with the models of Augis, Ozawa, Horowitz-Metzger, and Friedman, and the results showed that the models of Augis and Ozawa behave similarly to each other. Examination of the master curve of epoxy nanocomposites showed that by adding 0.5 and 1 wt% of elastomeric nanoparticles to the epoxy resin matrix, the degradation reaction mechanism becomes A4.

Keywords


 [1] J.Qiao, Elastomeric nano-particle and its applications in polymer modifications, Polym.Adv Technol.
3(2020),47-59.
[2] H.Ma ,G. Wei, Y.Liu , X.Zhang, J.Gao, F.H.B.
Tanb, Z.Song, J. Qiao, Effect of elastomeric nanoparticles on properties of phenolic resin, Polym .46
(2005),10568-10573.
[3] M.Zhang, Y.Liu, X.Zhang,J. Gao,F. Huang,Z.
Song,G. Wei ,J. Qiao, The effect of elastomeric nano- particles on the mechanical properties
and crystallization behavior of polypropylene,Pol
ym,43(2002),5133-5138.
[4] Q.Zhao, Y.Ding, B.Yan,N. Ning, Q. Fu, Highly efficient toughening effect of ultrafine full-vulcanized
powdered rubber on poly(lactic acid)(PLA), Polym.
Test.32(2103), 299-305.
[5] O.Zabihi, M.Ahmadi, M. Naebe, Self-assembly
of quaternized chitosan nanoparticles within nanoclay layers for enhancement of interfacial properties
in toughened polymer nanocomposites, Mater. Des.
119(2017) 277-289.
[6] M.H.Chen, C.Y.Ke, C.L.Chiang, Preparation
and Performance of Ecofriendly Epoxy/Multilayer
Graphene Oxide Composites with Flame-Retardant
Functional Groups, J. Compos. Sci. 2 (2018),1-16.
[7] B. Geyer, T.Hundshammer, S.Röhner, G.Lorenz,
A. Kandelbauer, Predicting thermal and thermo-oxidative stability of silane-modified clay minerals using
thermogravimetry and isoconversional kinetic analysis, Appl. Clay Sci .101(2014), 253-259 .
[8] D.Puglia, D.Valentini, J. M. Kenny, Analysis of
the cure reaction of carbon nanotubes/epoxy resin
composites through thermal analysis and Raman
spectroscopy, J. Appl. Polym. Sci. 88(2003), 452-
458.
[9] A.Aghajani, M.R.Kalaee,S. Mazinani, Physical,
Mechanical and Thermal Properties of Epoxy Coatings Modified with Nitrile-Butadiene Nano-rubber,
Adv. Mater. 7(2019),2036-2047.
[10] J.Malek, A computer program for kinetic analysis of non-isothermal thermoanalytical data, Thermochim.Acta. 138 (1989) ,337-346.
[11] J.Malek, The kinetic analysis of non-isothermal
  data, Thermochim.Acta. 200( 1992), 257-269.
[12] D. Reso, C.N .Cascaval, F.Mustata , C.Ciobanu,
Cure Kinetics, Epoxy Resins Studied by Nonisothermal DSC Data, Thermochim. Acta. 383(2002) 119-
127.
[13] S. Vyazovkin,A.K. Burnham,L. Favergeon,N.
Koga, E.Moukhina, A.Luis,P. Maqueda,
N.Sbirrazzuoli, ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics, Thermochim.Acta. 689(2020),178597.
[14] Y.Zhang, K.Y.Rhee, S.J Park, Nanodiamond
nanocluster-decorated graphene oxide/epoxy nanocomposites with enhanced mechanical behavior and
thermal stability, Compos. B. Eng. 114 (2017),111-
120.
[15] Z.Karami, S.M.R. Paran, P.Vijayan, M.R.
Ganjali, M.Jouyandeh, A.Esmaeili, S.Habibzadeh,
F.J.Stadler ,M.R.Saeb, A Comparative Study on Cure
Kinetics of Layered Double Hydroxide (LDH)/Epoxy
Nanocomposites, Compos Sci Technol. 4(2020),111.
[16] S. Vyazovkin, A.K. Burnham, J. M. Criado, L.
A. P.Maqueda, C. Popescud, N. Sbirrazzuoli, ICTAC
Kinetics Committee recommendations for performing
kinetic computations on thermal analysis data, Thermochim. Acta. 520 (2011), 1-19.
[17] Z. Nassaj, F. Ravari, I. Danaee , M. Ehsani ,
Thermal stability, degradation kinetic and electrical
properties studies of decorated graphene oxide with
CeO2 nanoparticles-reinforced epoxy coatings, Fuller. Nanotub. Carbon Nanostructures, 29(2021), 446-
456,
[18] P. Bari, S.Khan,J.Njuguna, S. Mishra, Elaboration of properties of graphene oxide reinforced epoxy
nanocomposites, Int. J. Plast. Technol. 21(2017), 194-
208.
[19] F. Ren, G.Zhu, P. Ren, Y.Wang, X. Cui, In situ
polymerization of graphene oxide and cyanate esterepoxy with enhanced mechanical and thermal properties, Appl. Surf. Sci, 316(2014), 549-557.
[20] L.X Gong, L. Zhao, L.C.Tang, H.Y. Liu, Y.W.
Mai, Balanced electrical, thermal and mechanical
properties of epoxy composites filled with chemically
reduced graphene oxide and rubber nanoparticles,
Compos Sci Technol, 121(2015), 104-114.
[21] F.Ferdosian, Z.Yuan, M.Anderson, C.C.Xu, Sustainable Lignin-Based Epoxy Resins Cured with
Aromatic and AliphaticAmine Curing Agents: Curing Kinetics and Thermal Properties,Thermochim.
Acta.618( 2015), 48-55.
[22] J. L. Chen, F. L. Jin, S. J. Park, Thermal stability and impact and flexuralproperties of epoxy
resins/epoxidized castor oil/nano-CaCO3ternary
systems,Macromol. Res. 18 (2010), 862–867.
[23] Y. Fu, W.H. Zhong, Cure kinetics behavior of
a functionalized graphitic nanofiber modified epoxy
resin, Thermochim. Acta. 516 (2011), 58-63.
[24] E.Esmizadeh, G. Naderi, A. A. Yousefi, C.
Milone, Investigation of curing kinetics of epoxy
resin/novel nanoclay -carbon nanotube hybrids by
non-isothermal differential scanning calorimetry, J
.Therm. Anal Calorim. 126(2016), 771–784 .
[25] Ba. Guo, D.Jia, C. Ca, Effects of organo-montmorillonite dispersion on thermal stability of epoxy
resin nanocomposites, Eur. Polym. J. 40 (2004).
1743-1748.
[26] N. Kaptan , S. H. Jafari , S. Mazinani , S.
Akhlaghi , H. Fazilat , U. W. Gedde , M. S. Hedenqvist , A Naderi , A Monfared, Thermal Behavior
and Degradation Kinetics of Compatibilized Metallocene-Linear Low Density Polyethylene/Nanoclay
Nanocomposites, Polym Plast Technol , 53(2014),
890-902.
[27] O. Zabihi , A. Omrani , A. A. Rostami, Thermooxidative degradation kinetics and mechanism of the
system epoxy nanocomposite reinforced with nanoAl2O3, J Therm Anal Calorim.108 (2012) ,1251-
1260.
[28] O. Bianchi, G.B. Repenning, L.B. Canto, R.S.
Mauler, R.V.B. Oliveira, Kinetics of thermo-oxidative degradation of PS-POSS hybrid nanocomposite,
Polym. Test. 32 (2013), 794-801.
[29] Vi.Pistor, F. G. Ornaghi, H. L. O.Jr,A. J. Zattera,
Degradation Kinetic of Epoxy Nanocomposites Containing Different Percentage of EpoxycyclohexylPOSS, Polym. Compos,33( 2012), 1224-1232.
[30] L. A.P.Maqueda, J. M. Criado, F. J. Gotor, J.
Málek, Advantages of Combined Kinetic Analysis of
Experimental Data Obtained under Any Heating Profile, J. Phys. Chem . 106(2002) , 2862-2868.
[31].M.H.Karami ,M.R. Kalaee , Review of curing
  kinetics of epoxy nanocomposites in the presence
of iron oxide nanoparticles, Polymerization,(2021),
DOI:10.22063/BASPARESH.2021.2824.1537.
[32] M.H. Karami , M.R.Kalaee ,S. Mazinani ,V.G,
R.M.R.Wellen ,A.M. Shanmugharaj ,K. Kim, Isoconversional Model Approach and Cure Kinetics Of
Epoxy/ NBR Nanocomposites, Proceeding of the
14th International Seminar on Polymer Science and
Technology (ISPST 2020), Tarbiat Modares University, Tehran, Iran, 9-12 November, (2020),Part4,9-10.
[33] M.H.Karami , M.R.Kalaee , Curing of Epoxy/
UFNBRP Nano Composites Using Calorimetric
Method, Proceeding of the 11th International Chemical Engineering Congress & Exhibition (IChEC
2020), Tehran University ,Fouman, Iran, 15-17 April,
(2020).
[34] M.H. Karami ,M.R. Kalaee ,S. Mazinani ,
Chemorheology of Nano acrylonitrile butadiene
rubber (n-NBR)/epoxy nanocomposites, Proceeding of the 1st International Conference on Rheology
(ICOR), Iran Polymer and Petrochemical Institute,
Tehran, Iran, 17-18 December ,(2019) ,104-105.
[35] M.H. Karami ,M.R. Kalaee, Chemorheology of
epoxy nanocomposites in the presence of elastomeric
nanoparticles, Proceeding of the National Conference on Advanced Technologies in Energy, Water
and Environment, Sharif Energy Research Institute,
Tehran, Iran,3March, (2021),209-216.
[36] M.H. Karami ,M.R. Kalaee ,Modeling of curing kinetics of epoxy nanocomposites by time sweep
method, Proceeding of the National Conference on
Advanced Technologies in Energy, Water and Environment, Sharif Energy Research Institute, Tehran,
Iran,3March ,(2021),234-241.
[37] M.H. Karami ,M.R. Kalaee, A review of the
curing kinetics of epoxy nanocomposites/nano clay,
Iran polymer technology, Research and development,6(2021),29-38.
[38] M.H. Karami ,M.R. Kalaee, Review of degradation kinetics of epoxy nanocomposites in the presence of clay nanoparticles, Polymerization,(2021),
DOI: 10.22063/BASPARESH.2021.2895.1552.
[39] M.H. Karami ,M.R. Kalaee, A Review Of The
Applications Of Cross-linked Elastomeric Nanoparticles, Iranian Rubber Magazine, 25 (2021), 37-56.