Improving the hydrophobic properties and mechanical abrasion of hybrid reinforced polyurethane coating with nanosilica-modified carbon nanotubes for use in gas pipelines

Document Type : Research Article

Authors

1 Chemical engineering department, Hamedan University of Technology

2 - Hamedan Gas Company, Hamedan, Iran, postal code 935733202

3 Hamedan Gas Company, Hamedan, Iran, Postal Code 935733202

amnc.2021.10.38.2

Abstract

Abstract: Polyurethane mastic coating (PU) according to IGS-M-TP-020-2 standard of Iran Gas Company is used as one of the insulation methods for pipes and fittings along with other insulation methods. In this study, hybrid nanocomposite coatings were prepared by mixing PU with 0.3 wt% by weight of multi-walled carbon nanotubes modified with different weight percentages of nanosilica in the thickness range of 1500-1000 μm. Characteristic tests were performed for coating application in gas transmission pipelines and the results were compared with pure PU sample. According to the analysis of transmission electron microscopy, the optimal amount of 1% by weight of nanosilica led to the proper dispersion of nanoparticles within the polymer structure. The high resistance of nanocomposite coating against moisture penetration and its hydrophobicity was justified by reducing the glide angle to 17o and increasing the sphericity of water droplets on the coating surface. Less than 100 mg of mass loss due to mechanical abrasion and a slight decrease in the adhesion of the coating on the steel surface (less than 15%) and the elongation (%) under standard tension in the range of 10-15% compared to pure PU coating, justifies its use as a new coating to increase the life of steel gas pipes. The results of this research regarding the mentioned tests indicate the observance of the technical standards of Iran Gas Company by the proposed coverage. Investigation of other technical requirements of the coating is essential in research futures.

Keywords


 [1] A. Samimi, Use of polyurethane coating to prevent corrosion
in oil and gas pipelines transfer, Int. J. Innovation Appl. Stud.
1(2012), 186-193.
[ ]2استاندارد مهندسی برای پوششهای حفاظتی و سازههای مدفون در خاک و غوطه ور
در آب، ویرایش اول، اسفند .1387
[3] M. Joshi, B. Adak, B.S. Butola, Polyurethane nanocomposite
based gas barrier films, membranes and coatings: A review on synthesis, characterization and potential applications, Prog. Mat. Sci.,
97(2018), 230-282.
[4] J.M. Kim, J.H. Kim, J.H. Ahn, J.D. Kim, S. Park, K.H. Park,
J.M. Lee, Synthesis of nanoparticle-enhanced polyurethane foams
and evaluation of mechanical characteristics. Compos. Part B Eng.
136(2018), 28-38.
[. ]5شهریاری فر، حسین؛ حسن زاده، مهدی؛ بهبود خواص ضد آب و تنفس پذیری
غشای نانولیفی هیبریدی پلی یورتان-پلی(وینیلیدین فلوراید،) نشریه علمی-پژوهشی
مواد پیشرفته و پوششهای نوین، دوره .2630-2622 )1400( 36
[6] F. Wang, L. Feng, M. Lu, Mechanical properties of multiwalled carbon nanotube/waterborne polyurethane conductive coatings prepared by electrostatic spraying, Polymers 11(2019), 1-11.
[7] W. WendelWohlleben, M.W. Meier, S. Vogel, R. Landsiedel, G.
Cox, S. Hirth, Z. Tomovi, Elastic CNT-polyurethane nanocomposite: synthesis, performance and assessment of fragments released
during use, Nanoscale, 5(2013), 369-380.
[8] Sh. Xu, W. Yu, M. Jing, R. Huang, Zhang Q., FuQ., Largely
enhanced stretching sensitivity of polyurethane/carbon nanotube
nanocomposites via incorporation of cellulose nanofiber, J. Phys.
Chem. C 121(2017), 2108-2117.
[9] Y. Martinez-Rubi, B. Ashrafi, M.B. Jakubinek, Sh. Zou, K.
Laqua, M. Barnes, B. Simard, Fabrication of high content carbon
nanotube-polyurethane sheets with Tailorable properties, ACS
Appl. Mater. Interfaces, 9(2017), 30840-30849.
[10] N.W. Khun, G.S. Frankel, Cathodic delamination of polyurethane/multiwalled carbon nanotubecomposite coatings from steel
substrates. Prog. Org. Coat. 99(2016), 55-60.
[11] M.Y. Dong, Q. Li, H. Liu, C.T. Liu, E.K. Wujcik, Q. Shao,
T. Ding, X.M. Mai, C.Y. Shen, Z.H. Guo, Thermoplastic polyurethane-carbon black nanocomposite coating: Fabrication and solid
particle erosion resistance. Polymer, 158(2018), 381-390.
[12] M. Sabzi, S.M. Mirabedini, J. Zohuriaan-Mehr, M. Atai,
Surface modification of TiO2 nano-particles with silane coupling
agent and investigation of its effect on the properties of polyurethane composite coating, Prog. Org. Coat. 65(2009), 222-228.
[13] S.-X. Zhou, L.-M. Wu, J. Sun, W.-D. Shen, Effect of nanosilica on the properties of polyester-based polyurethane. J. Appl.
Polym. Sci., 88(2003), 189-93.
[14] P. Krol, Synthesis methods, chemical structures and phase
structures of linear polyurethanes. Properties and applications of
linear polyurethanes in polyurethane elastomers, copolymers and
ionomers. Prog Mater Sci., 52(2007), 915-1015.
[ ]15ب. مداح، ع. یاوری پور، س. حسنی رمدانی، ح. حسینی، م. حسن زاده، بهبود جذب
گاز سولفید هیدروژن در غشاهای نانولیفی پلی یورتان با استفاده از نانولولههای کربنی
اصلاح شده با نانوذرات اکسید فلزی، نشریه علمی-پژوهشی مواد پیشرفته و پوششهای
نوین، دوره ،8شماره ،2138-2130 ،30پاییز .1398
[16] E.T. Thostenson, C. Li, T.W. Chou, Nanocomposites in context, Composite Sci. Technol. 65(2005), 491-516.
[17] J. Vega-Baudrit, V. Navarro-Banon, P. Vasquez, J.M. MartinMartinez Addition of nanosilicas with different silanol content
to thermoplastic polyurethane adhesives. Int. J. Adhes. Adhes.,
5(2006), 378-387.
[18] D.J. Mills, S.S. Jamali, K. Paprocka, Investigation into the
effect of nano-silica on the protective properties of polyurethane
coatings, Surf. Coat. Technol. NN2 6JD, 209(2012), 137-142.
[19] M.Ł. Maminski, A.M. Wiecław-Midor, P.G. Parzuchowski,
The effect of silica-filler on polyurethane adhesives based on renewable resource for wood bonding. Polymers 12(2020), 1-13.
[ ]20م. فلسفین، ف. اشرفی زاده، ارزیابی چسبندگی و بارپذیری پوشش
نانوساختار
CrN-CrAlNبه روش رسوب فیزیکی بخار، فصلنامه علمی-
پژوهشی مواد پیشرفته در مهندسی، سال ،37شماره ،81-92 ،2تابستان 139