Fabrication and characterization of hemostatic wound dressing based on chitosan/tannic acid/zeolitic imidazole framework (ZIF-8) composite nanofibers

Document Type : Research Article

Authors

1 Department of Textile Engineering, Yazd University, P.O. Box 89195-741, Yazd, Iran

2 Department of Textile Engineering, Yazd University, Yazd, Iran

/amnc.2021.10.38.4

Abstract

In this study, chitosan composite nanofibers containing tannic acid and zinc-based metal-organic framework (ZIF-8) were produced for application as a hemostatic wound dressing. First, metal-organic framework named zeolite imidazolate framework (ZIF-8) was synthesized and chitosan composite nanofibers containing tannic acid and ZIF-8 were fabricated through electrospinning. The effect of tannic acid and metal-organic framework on the morphology and hemostatic properties of chitosan nanofibers was studied. Scanning electron microscopy, X-ray diffraction and blood coagulation tests were utilized. The study of the morphology of nanofibrous wound dressings shows the fabrication of uniform and bead-free nanofibers with an average diameter of 120 to 150 nm. The addition of tannic acid, due to the formation of hydrogen bonds and increasing the viscosity of the polymer solution, increased the diameter of chitosan nanofibers. Prothrombin time (PT) and activated partial thromboplastin time (aPTT) tests, which check the performance of extrinsic and intrinsic pathway of blood coagulation, respectively, were used to evaluate the hemostatic activity of the fabricated wound dressings. The results show that the fabricated nanofibrous wound dressings significantly affect the extrinsic pathway of blood coagulation and factor VII, so that the blood coagulation time is reduced by 60% compared to the control sample. Due to the suitable structural and morphological properties of fabricated composite nanofibers, as well as their accelerated coagulation performance, they can be used as a suitable candidate in wound dressing applications.

Keywords


 [1] H. B. Alam, D. Burris, J. A. DaCorta, and P. Rhee,
“Hemorrhage Control in the Battlefield: Role of New Hemostatic
Agents,” Mil. Med., vol. 170, no. 1, pp. 63–69, Jan. 2005, doi:
10.7205/MILMED.170.1.63.
[2] M. V. Pogorielov and V. Z. Sikora, “Chitosan as a Hemostatic
Agent: Current State,” Eur. J. Med. Ser. B, vol. 2, no. 1, pp. 24–33,
2015, doi: 10.13187/ejm.s.b.2015.2.24.
[3] E. E. Leonhardt, N. Kang, M. A. Hamad, K. L.
Wooley, and M. Elsabahy, “Absorbable hemostatic hydrogels
comprising composites of sacrificial templates and honeycomblike nanofibrous mats of chitosan,” Nat. Commun. 2019 101, vol.
10, no. 1, pp. 1–9, May 2019, doi: 10.1038/s41467-019-10290-1.
[4] P. Zahedi, I. Rezaeian, S.-O. Ranaei-Siadat, S.-H. Jafari, and
P. Supaphol, “A review on wound dressings with an emphasis
on electrospun nanofibrous polymeric bandages,” Polym. Adv.
Technol., vol. 21, no. 2, pp. 77–95, Feb. 2010, doi: 10.1002/
PAT.1625.
[5] A. J. Hassiba et al., “Review of recent research on
biomedical applications of electrospun polymer nanofibers for
improved wound healing,” https://doi.org/10.2217/nnm.15.211,
vol. 11, no. 6, pp. 715–737, Jan. 2016, doi: 10.2217/NNM.15.211.
[6] K. S. B. Masters, S. J. Leibovich, P. Belem, J. L. West, and
L. A. Poole-Warren, “Effects of nitric oxide releasing poly(vinyl
alcohol) hydrogel dressings on dermal wound healing in diabetic
mice,” Wound Repair Regen., vol. 10, no. 5, pp. 286–294, Sep.
2002, doi: 10.1046/J.1524-475X.2002.10503.X.
[7] O. Chiara et al., “A systematic review on the use of topical
hemostats in trauma and emergency surgery,” BMC Surg. 2018
181, vol. 18, no. 1, pp. 1–20, Aug. 2018, doi: 10.1186/S12893-
018-0398-Z.
[8] A. Hadjizadeh and C. J. Doillon, “Directional migration of
endothelial cells towards angiogenesis using polymer fibres in a
3D co-culture system,” J. Tissue Eng. Regen. Med., vol. 4, no. 7,
pp. 524–531, Oct. 2010, doi: 10.1002/TERM.269.
[9] A. Abedi, M. Hasanzadeh, and L. Tayebi, “Conductive nanofibrous Chitosan/PEDOT:PSS tissue engineering scaffolds,”
Mater. Chem. Phys., vol. 237, p. 121882, Nov. 2019, doi: 10.1016/j.
matchemphys.2019.121882.
[10] X. Fan, Y. Li, N. Li, G. Wan, M. A. Ali, and K.
Tang,“Rapid hemostatic chitosan/cellulose composite sponge
by alkali/urea method for massive haemorrhage,” Int. J. Biol.
Macromol., vol. 164, pp. 2769–2778, Dec. 2020, doi: 10.1016/J.
IJBIOMAC.2020.07.312.
[11] Z. Hu, D.-Y. Zhang, S.-T. Lu, P.-W. Li, and S.-D. Li,
“Chitosan-Based Composite Materials for Prospective Hemostatic
Applications,” Mar. Drugs 2018, Vol. 16, Page 273, vol. 16, no. 8,
p. 273, Aug. 2018, doi: 10.3390/MD16080273.
‌م.‌علیزاده،‌م.‌حسن‌زاده،‌س.‌محتشمی،‌بهبود‌رفتار‌جذب‌صوت‌فوم‌پلی‌یورتان ][12
‌نرم‌تقویت‌شده‌با‌نانوالیاف‌پلیمری،‌نانولوله‌کربنی‌و‌نانوذرات،‌نشریه‌علمی‌پژوهشی
.مواد‌پیشرفته‌و‌پوشش‌های‌نوین،‌دوره‌‌،8شماره‌‌،2080-2072‌،29تابستان‌1 
 ‌ب.‌مداح،‌ع.‌یاوری‌پور،‌س.‌حسنی‌رمدانی،‌ح.‌حسینی،‌م.‌حسن‌زاده،‌بهبود‌جذب[‌]13
‌گاز‌سولفید‌هیدروژن‌در‌غشاهای‌نانولیفی‌پلی‌یورتان‌با‌استفاده‌از‌نانولوله‌های‌کربنی
‌اصلاح‌شده‌با‌نانوذرات‌اکسید‌فلزی،‌نشریه‌علمی‌پژوهشی‌مواد‌پیشرفته‌و‌پوشش‌های
.نوین،‌دوره‌‌،8شماره‌‌،2138-2130‌،30پاییز‌1398
[14] B. H. Moghadam and M. Hasanzadeh, “Predicting
contact angle of electrospun pan nanofiber mat using artificial
neural network and response surface methodology,” Adv. Polym.
Technol., vol. 32, no. 4, 2013, doi: 10.1002/adv.21365.
[15] S. F. Dehghan et al., “Optimization of electrospinning
parameters for polyacrylonitrile-MgO nanofibers applied in air
filtration,” J. Air Waste Manag. Assoc., vol. 66, no. 9, pp. 912–921,
2016, doi: 10.1080/10962247.2016.1162228.
[16] B. Maddah, A. Yavaripour, S. H. Ramedani, H. Hosseni, and
M. Hasanzadeh, “Electrospun PU nanofiber composites based on
carbon nanotubes decorated with nickel-zinc ferrite particles as an
adsorbent for removal of hydrogen sulfide from air,” Environ. Sci.
Pollut. Res., vol. 27, no. 28, pp. 35515–35525, 2020, doi: 10.1007/
s11356-020-09324-9.
[17] J. Varshosaz, Z. Choopannejad, M. Minaiyan, and A. Z.
Kharazi, “Rapid hemostasis by nanofibers of polyhydroxyethyl
methacrylate/polyglycerol sebacic acid: An in vitro / in vivo
study,” J. Appl. Polym. Sci., vol. 138, no. 5, p. 49785, Feb. 2021,
doi: 10.1002/APP.49785.
[18] B. Mishra, S. Hossain, S. Mohanty, M. K.
Gupta, and D. Verma, “Fast acting hemostatic agent based on
self-assembled hybrid nanofibers from chitosan and casein,”
Int. J. Biol. Macromol., vol. 185, pp. 525–534, Aug. 2021, doi:
10.1016/J.IJBIOMAC.2021.06.116.
[19] H. S. Far, M. Hasanzadeh, M. S. Nashtaei, M. Rabbani, A.
Haji, and B. Hadavi Moghadam, “PPI-Dendrimer-Functionalized
Magnetic Metal-Organic Framework (Fe3O4@MOF@PPI) with
High Adsorption Capacity for Sustainable Wastewater Treatment,”
ACS Appl. Mater. Interfaces, vol. 12, no. 22, pp. 25294–25303,
2020, doi: 10.1021/acsami.0c04953.
[20] A. Hamedi, A. Anceschi, F. Trotta, M. Hasanzadeh, and F.
Caldera, “Rapid temperature-assisted synthesis of nanoporous
γ-cyclodextrin-based metal–organic framework for selective CO2
adsorption,” J. Incl. Phenom. Macrocycl. Chem., vol. 99, no. 3–4,
pp. 245–253, 2021, doi: 10.1007/s10847-020-01039-1.
[21] H. Shahriyari Far, M. Hasanzadeh, M. Najafi, T. R. Masale
Nezhad, and M. Rabbani, “Efficient Removal of Pb(II) and Co(II)
Ions from Aqueous Solution with a Chromium-Based MetalOrganic Framework/Activated Carbon Composites,” Ind. Eng.
Chem. Res., vol. 60, no. 11, pp. 4332–4341, 2021, doi: 10.1021/
acs.iecr.0c06199.
[22] Y. Xu et al., “Zinc Metal-Organic Framework
@ Chitin Composite Sponge for Rapid Hemostasis
and Antibacteria Infection,” ACS Sustain. Chem. Eng., vol. 8, no.
51, pp. 18915–18925, 2020, doi: 10.1021/acssuschemeng.0c06044.
[23] J. Yang et al., “Synergistic antibacterial polyacrylonitrile/
gelatin nanofibers coated with metal-organic frameworks for
accelerating wound repair,” Int. J. Biol. Macromol., vol. 189, pp.
698–704, Oct. 2021, doi: 10.1016/J.IJBIOMAC.2021.08.175.
[24] F. Xu, B. Weng, R. Gilkerson, L. A. Materon, and K. Lozano,
“Development of tannic acid/chitosan/pullulan composite nanofibers from aqueous solution for potential applications as wound
dressing,” Carbohydr. Polym., vol. 115, pp. 16–24, 2015, doi:
10.1016/j.carbpol.2014.08.081.
[25] N. M. Mahmoodi, M. Oveisi, A. Taghizadeh, and M.
Taghizadeh, “Synthesis of pearl necklace-like ZIF-8@chitosan/
PVA nanofiber with synergistic effect for recycling aqueous dye
removal,” Carbohydr. Polym., vol. 227, p. 115364, 2020, doi:
10.1016/j.carbpol.2019.115364.
[26] A. Ahmad et al., “Cu-doped zeolite imidazole framework
(ZIF-8) for effective electrocatalytic CO2 reduction,” J. CO2 Util.,
vol. 48, p. 101523, Jun. 2021, doi: 10.1016/J.JCOU.2021.101523.
[27] W. Xu, Y. Chen, J. Kang, and B. Li, “Fabrication of ZIF-8
based on lignin with high yield for dye removal from water,” J.
Iran. Chem. Soc., vol. 16, no. 2, pp. 385–392, 2019, doi: 10.1007/
s13738-018-1517-6.
[28] S. Yang et al., “Synthesis of nano-ZIF-8@chitosan
microspheres and its rapid removal of p-hydroxybenzoic acid from
the agro-industry and preservatives,” J. Porous Mater., vol. 28, no.
1, pp. 29–38, 2021, doi: 10.1007/s10934-020-00966-1.
[29] A. Mozaffari, M. Mirjalili, M. P. Gashti, and M. Parsania, “Effect of tannic acid on properties of electrospun gelatin nanofibres,”
Indian J. Fibre Text. Res., vol. 45, no. 2, pp. 153–163, 2020.