Investigation graft polymerization of cyclodextrin derivative on the surface of cellulose by applying plasma technic

Document Type : Research Article

Authors

1 Chemistry and Petrochemistry Research Center, Standard Research Institute, Karaj, Iran,

2 Department of Textile Engineering, Amirkabir University, Tehran, Iran

/amnc.2021.10.38.5

Abstract

Cellulose finds applications in the various fields as composite materials, textiles, drug delivery systems and protective products; in addition, cyclodextrins as a compound to improve these applications, can form inclusion complexes but cannot form direct covalent bonds to the textile materials, so it is important to achieve appropriate methods to anchoring cyclodextrins based on grafting polymeric compounds on the surface modification of the cellulose. In this study, binding of a reactive β-cyclodextrin to cellulose was investigated using chemical, physical and instrumental methods and the mechanism of grafting of reactive cyclodextrin onto the surface of cellulosic fabric was studied. Intended for grafting this compound on the cotton fabric, plasma technique was used to activate the surface to generate free radicals on cellulosic chains. According to the results, the yields of grafting the reactive derivative of β-cyclodextrin onto the surface of cellulosic fabrics increased by applying copolymers of this derivative and an intermediate monomer. In addition, the impact of the graft polymerization of these vinyl monomers on the performance of cotton fabric was evaluated and the results showed that although activation of the surface is attributed to cellulose degradation, the graft copolymerization monomers could be responsible for the compensating increase in its tensile strength and crease recovery in the suitable conditions. Furthermore, investigation the performance of the fabric in different conditions of surface activation and grafting of monomers, increases possibility of explaining the proposed mechanisms.

Keywords


 1. H. Krassig, Cellulose-Structure, Accessibility and Reactivity,
Gordon and Breach Science Publisher, Yverdon, 1993.
2. D. Klemm, B. Heublein, H. P. Fink and . A. Bohn, Cellulose:
fascinating biopolymer and sustainable raw material, Angew.
Chem., vol. 44, pp. 3358-3393, 2005.
3. D. Roy, M. Semsarilar, J. T. Guthrie and S. Perrier, Cellulose
modification by polymer grafting: a review, Chemical Society
Reviews, vol. 38, no. 7, pp. 1825-2148, 2009.
4. H. A. Krassig, Cellulose and Its Derivatives:
Chemistry,Biochemistry and Applications, Ellis Horwood
Limited,Chichester, 1985, p. 3–25.
5. P. J. Wakelyn, Handbook of Fiber Chemistry, New York, 1998,
p. 642–654.
6. A. Hebeish and J. T. Guthrie, The Chemistry and Technology of
Cellulosic Copolymers, Berlin: Springer-Verlag, 1981.
7. C. Chan, T. Ko and H. Hiraoka, Polymer surface modification by
plasmas and photons, Surface Science Reports, vol. 24, pp. 1-54,
1996.
8. A. Hoffman, Surface Modification of Polymers: Physical,
Chemical, Mechanical and Biological Methods, Macromolecular
Symposia, vol. 101, pp. 443-454, 1996.
9. G. Odian, Principles of Polymerization, Hoboken: John Wiley
and Sons, 2004.
10. H. G. Borner and K. Matyjaszewski, Graft copolymers by
atom transfer polymerization, Macromol. Symp., vol. 177, p. 1–15,
2002.
11. K. C. Gupta and K. Khandekar, Temperature-responsive
cellulose by ceric(IV) ion-initiated graft copolymerization of
N-isopropylacrylamide, Biomacromolecules, vol. 4, p. 758–765,
2003.
12. G. Moad and D. H. Solomon, The Chemistry of Radical
Polymerization, Elsevier Ltd وOxford, 2002.
13. A. Hebeish and J. T. Guthrie, The Chemistry and Technology of
Cellulosic Copolymers, Berlin: Springer-Verlag, 1981.
14. V. T. Stannett and H. B. Hopfenberg, Cellulose and Cellulose
Derivatives, vol. 5, New York: John Wiley and Sons, 1971, p.
907–936.
15. D. J. McDowall, B. S. Gupta and V. T. Stannett, Grafting of
vinyl monomers to cellulose by ceric ion initiation, Prog. Polym.
Sci., vol. 10, p. 1–50, 1984.
16. K. C. Gupta and K. Khandekar, Ceric (IV) ion-induced graft
copolymerzation of acrylamide and ethyl acrylate onto cellulose,
Polym. Int., vol. 55, no. 2, p. 139–150, 2006.
17. K. Matyjaszewski, Handbook of Radical Polymerization, John
Wiley and Sons, 2002, p. 61–406.
18. E. Rizzardo, . J. Chiefari, . B. Y. K. Chong, F. Ercole, J. Krstina,
J. Jeffery, T. P. T. Le and R. T. A. Mayadunne, Macromol. Symp.,
vol. 143, p. 291–307, 1999.
19. R. Shishoo, Plasma technologies for textiles, Woodhead, 2007.
20. Y. Hwang, Characterization of Atmospheric Pressure Plasma
Interactions with Textile/Polymer Substrates, 2003.
21. H. Yasuda, Plasma polymerization, Academic Press, 1985.
22. A. Fridman, Plasma Chemistry, Cambridge University Press,
2008.
23. N. Inagaki, S. Tasaka and H. Kawai, Surface modification of
Kevlar fiber by a combination of plasma treatment and coupling
agent treatment for silicone rubber composite, Journal of Adhesion
Science and Technology, vol. 6, pp. 279-291, 1992.
24. N. Inagaki, Plasma surface modification and plasma
polymerization., CRC Press, 1996.
25. B. Graham, Technological Plasmas, Physics World, vol. 14, no.
3, pp. 31-36, 2001.
26. W. Rakowski, Plasma treatment of wool today. Part 1 – Fibre
properties, spinning and shrinkproofing, Journal of the Society of
Dyers and Colorists, vol. 113, no. 9, pp. 250-255, 1997.
27. S. Vaswani, J. Koskinen and D. Hess, Surface modification of
paper and cellulose by plasma-assisted deposition of fluorocarbon
films, Surface and Coatings Technology, vol. 195, pp. 121-129,
2005.
28. T. Herbert, Atmospheric-Pressure Cold Plasma Processing
Technology. In: Plasma Technologies for Textiles, Woodhead,
2007, pp. 79-128.
29. T. Desmet, . R. Morent, . N. D. Geyter, C. Leys and E.
Schacht , Nonthermal Plasma Technology as a Versatile Strategy
for Polymeric Biomaterials Surface Modification: A Review,
Biomacromolecules, vol. 10, pp. 2351-2378, 2009.
30. J. Jeong, S. Babayan, V. Tu, J. Park, I. Henins, R. Hicks and
G. Selwyn, Etching materials with an atmospheric-pressure plasma
jet, Plasma Sources Science and Technology, vol. 7, pp. 282-285,
1998.
31. J. Laimer and H. Störi, Recent Advances in the Research on
Non-Equilibrium Atmospheric Pressure Plasma Jets, Plasma
Processes and Polymers, vol. 4, pp. 266-274, 2007.
32. B. Marcandalli and C. Riccardi, Plasma Treatment of Fibres
and Textiles, Woodhead, 2007, pp. 282-300.
33. N. Inagaki, K. Narushim., N. Tuchida and K. Miyazaki, Surface
characterization of plasma-modified poly(ethylene terephthalate)
film surfaces, Journal of Polymer Science Part B: Polymer Physics,
vol. 42, no. 20, pp. 3727-3740, 2004.
34. A. Felten, C. Bittencourt, J. J. Pireaux, G. Van Lier and J. C.
Charlier, Radio-frequency plasma functionalization of carbon
nanotubes surface: O2, NH3, and CF4 treatments, Journal of
Applied Physics, vol. 98, no. 7, pp. 074038-9, 2005.
35. C. Oehr, M. Müller, B. Elkin, D. Hegemann and U. Vohrer,
Plasma grafting - a method to obtain monofunctional surfaces,
Surface and Coatings Technology, vol. 116, pp. 25-35, 1999.
36. G. Placinta, F. Arefi-Khonsari, M. Gheorghiu, J. Amouroux
and G. Popa, Surface properties and the stability of poly(ethylene
terephtalate) films treated in plasmas of helium-oxygen mixtures,
Journal of Applied Polymer Science, vol. 66, pp. 1367-1375, 1997.
37. F. M. Bezerra, et al., The Role of β-Cyclodextrin in the Textile
Industry, Molecules, 25(16), 2020, 3624- 3652.
 
 38. M. Nazi, R. M. A. Malek, R. Kotek, Modification of
β-cyclodextrin with itaconic acid and application of the new
derivative to cotton fabrics, Carbohydrate Polymers, 88, 2012,
950– 958.
39. M. Nazi, R. M. A. Malek, M. B. Moghadam, Effect of
processing conditions on producing a reactive derivative from
β-cyclodextrin with itaconic acid, Starch/Stärke, 2012, 64 (10),
794-802.
40. R. M.A. Malek, Accelerating Direct Dye uptake on cotton, PhD
Thises, 1997.
41. R. Stone and J. Barrett, Study reveals intresting effects of gas
plasma reaction on cotton yarns, Textile Bull., vol. 65, 1962.
42. H. Jung, T. ward and R. Benerito, The effect of argon cold
plasma on water adsorption of cotton, Textile Research J., vol. 47,
pp. 217-222, 1977.
R. Benerito, T. Ward, D. Soignet and O. Hinojosa, Modification of
cotton cellulose surfaces by use of radioferequency cold plasma
and characterization of surface changes by ESCA, Textile Research
J., vol. 51, pp. 224-232, 1981.
43. T. Wakiada, K. Takeda, I. Tanaka and T. Tagashi, Free radicals
in cellulose fibers treated with low temperature plasma, textile
Research J., vol. 59, pp. 49-53, 1898.
44. R. M.A. Malek and I. Holme, The effect of plasma treatment
on some properties of cotton, Iranian Polymer Journal, vol. 12, no.
4, pp. 271-280, 2003.
45. M. Kuzuya, K. Morisaki, J. Niwa, Y. Yamauchi and K. Xu,
Spectrochemistry of poly-carbohydrate free radicals generated
by argon plasmolysis: effect of tertiary structure on free radical
formation, J. Phys. Chem., vol. 98, p. 11301–11307, 1994.