Investigation of electrical, mechanical and thermal properties of silicone nanocomposites as electrical coating insulation

Document Type : Research Article

Authors

1 Department of Polymer Engineering, Faculty of Engineering. Islamic azad university , South tehran branch.Tehran, Iran

2 Department of Polymer Processing, Iran Polymer and Petrochemical Institute.Tehran, Iran

3 School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.

4 Department of Polymer Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

5 polymer faculty,south Tehran Branch,Islamic Azad University,Tehran,Iran

amnc.2022.10.39.7

Abstract

Abstract
Silicone rubber (SR) is a high voltage insulation coating, but has poor mechanical properties. Adding nanoparticles is a promising way to deal with this problem. In this study, evaluation of the presence of SiO2, Al2O3, MgO and SiC nanoparticles in the amounts of 0, 2, 4 and 6% by weight in the structure of silicone rubber was done through the distribution of particles within the silicon matrix and simultaneous curing. Mechanical electrical and dynamic-mechanical thermal analysis tests were performed to study the behavior of the prepared samples. Results showed that the presence of nanoparticles even in small amounts increased the strength and elongation at break and the only exception in this regard was the presence of SiC nanoparticles at 4 and 6% by weight in which a decrease in this property was observed. The electrical resistance of SR increased with the mixing of small amounts of nanoparticles. The results of polarization tests showed that the addition of SiC reduced the polarization current to about 200 pA compared to other samples. Dielectric breakdown test showed that the structures containing SiO2 and Al2O3 and 2% SiC nanoparticles had the highest dielectric strength. Dynamic-mechanical thermal analysis tests also showed that the storage modulus and glass transition temperature of the resulting nanocomposites increased up to 7 MPa and about 50 ° C, respectively, The thermogravimetric analysis showed a 100 ° C increase in the degradation temperature and as a result, the thermal stability of the nanocomposites was superior to that of pure silicon.

Keywords


 1. H. I. Uckol, B. Karaca, S. Ilhan, DC and AC Electric
Field Analysis and Experimental Verification of a Silicone Rubber
Insulator. Electrical Engineering( 2020), pp. 1-12.
2. S. Alam, Y. V Serdyuk, S. M. Gubanski, Temperature
and Field Induced Variations of Electric Conductivities of HTV
Silicone Rubbers Derived from Measured Currents and Surface
Potential Decay Characteristics. Energies( 2020), vol. 13, p. 2982.
3. K. Mekala, S. Chandrasekar, R. Samson Ravindran,
Investigations of Accelerated Aged Polymeric Insulators Using
Partial Discharge Signal Measurement And Analysis. Journal of
Electrical Engineering and Technology( 2015), vol. 10, pp. 299-
307.
4. A. Nekahi, S.G. McMeekin, M. Farzaneh, Measurement
of Surface Resistance of Silicone Rubber Sheets under Polluted
and Dry Band Conditions. Electrical Engineering (2018), vol. 100,
pp. 1729-1738.
5. S. Gupta, P. C. Ramamurthy, G. Madras, Future scope
of silicone polymer based functionalized nanocomposites for
device packaging: a mini review. Journal of Chemical Engineering
& Process Technology (2015), vol. 6, p. 213.
6. Z.L. Li, B.X. Du, Z.R. Yang, J. Li, Effects of Crystal
Morphology on Space Charge Transportation and Dissipation of
Sic/Silicone Rubber Composites. IEEE Transactions on Dielectrics
and Electrical Insulation (2017), vol. 24, pp. 2616-2625.
7. M. Jouyandeh, O. Moini Jazani, A. H. Navarchian,
M. Shabanian, H. Vahabi, M. R. Saeb, Surface engineering of
nanoparticles with macromolecules for epoxy curing: Development
of super-reactive nitrogen-rich nanosilica through surface
chemistry manipulation. Applied Surface Science (2018), vol. 447,
pp. 152-164.
8. F. Tikhani, M. Jouyandeh, Seyed H. Jafari, S.
Chabokrow, M. Ghahari, K. Gharanjig, F. Klein, N. Hampp, M.
R. Ganjali, K. Formela, Cure Index demonstrates curing of epoxy
composites containing silica nanoparticles of variable morphology
and porosity. Progress in Organic Coatings( 2019), vol. 135, pp.
176-184.
9. S. Ghiyasi, M. Ganjaee Sari, M. Shabanian, M.
Hajibeygi, P. Zarrintaj, M Rallini, L. Torre, D. Puglia, H. Vahabi,
M. Jouyandeh, Hyperbranched poly (ethyleneimine) physically
attached to silica nanoparticles to facilitate curing of epoxy
nanocomposite coatings. Progress in Organic Coatings (2018), vol.
120, pp. 100-109.
10. E. Bakhshandeh, A. Jannesari, Z. Ranjbar, S. Sobhani,
M. R. Saeb, Anti-corrosion hybrid coatings based on epoxy–silica
nano-composites: toward relationship between the morphology
and EIS data. Progress in Organic Coatings (2014), vol. 77, pp.
1169-1183.
11. Z. Karami, O. Moini Jazani, A. H. Navarchian M. R.
Saeb, State of cure in silicone/clay nanocomposite coatings: the
puzzle and the solution. Progress in Organic Coatings (2018), vol.
  125, pp. 222-233.
12. Z. Karami, O. Moini Jazani, A.H. Navarchian, M.
Karrabi, H. Vahabi, M.R. Saeb, Well-cured silicone/halloysite
nanotubes nanocomposite coatings. Progress in Organic Coatings
(2019), vol. 129, pp. 357-365.
13. J. Vartika, M. Srividhya, D. Mayank, Effect of
Functionalization on Dispersion of Poss-Silicone Rubber
Nanocomposites. J. Appl. Polym. Sci (2013), vol. 130, pp. 92-96.
14. S. Ansorge, K. Papailiou, Properties of Silicone Rubber
under High Loadings of Alumina Trihydrate Filler. Journal of
Elastomers & Plastics (2016), vol. 48, pp. 354-382.
15. G. Momen, M. Farzaneh, Survey of Micro/Nano Filler
Use to Improve Silicone Rubber for Outdoor Insulators. Rev. Adv.
Mater. Sci (20110, vol. 27, pp. 1-13.
16. A. Khattak, M. Iqbal, M. Amin, Aging Analysis of
High Voltage Silicone Rubber/ Silica Nanocomposites Under
Accelerated Weathering Conditions. Science and Engineering of
Composite Materials (2017), vol. 24, pp. 679-689.
17. H. Li, Z. Yin, L. Deng, S. Wang, Z. Fu, Y. Ma, Effect
of SiO2/Al2O3 ratio on the structure and electrical properties of
MgO–Al2O3–SiO2 glass-ceramics doped with TiO2. Materials
Chemistry and Physics (2020), vol. 256, p. 123653.
18. M. Ma, L. Xu, L. Qiao, S. Chen, Y. Shi, H. He, X.
Wang, Nanofibrillated Cellulose/MgO@rGO composite films with
highly anisotropic thermal conductivity and electrical insulation.
Chemical Engineering Journal (2020), vol. 392, p. 123714.
19. A. M. Pourrahimi, L. K.H. Pallon, D. Liu, T. A.
Hoang, S. Gubanski, M. S. Hedenqvist, R. T. Olsson, U. Gedde,
Polyethylene Nanocomposites for fhe Next Generation of UltraLow Transmission-Loss HVDC Cables: Insulations Containing
Moisture-Resistant Mgo Nanoparticles. ACS applied materials &
interfaces(2016), vol. 8, pp. 14824-14835.
20. I. Saini, A. Sharma, R. Dhiman, S. Aggarwal, S. Ram,
P. K. Sharma, Grafted SiC Nanocrystals for Enhanced Optical,
Electrical and Mechanical Properties of Polyvinyl Alcohol. Journal
of Alloys and Compounds (2017), vol. 714, pp. 172-180.
21. Y.Wang, C. Wang, K. Xiao, Investigation of the
Electrical Properties of XLPE/Sic Nanocomposites. Polymer
Testing (2016), vol. 50, pp. 145-151.
22. N. Shang, Q.Chen, X. Wei, Preparation and Dielectric
Properties of SiC/LSR Nanocomposites for Insulation of High
Voltage Direct Current Cable Accessories. Materials (2018), vol.
11, p. 403.
23. P. Fan, Z. Sun, Y. Wang, H. Chang, P. Zhang, S. Yao,
C. Lu, W. Rao, J. Liu, Nano liquid metal for the preparation of a
thermally conductive and electrically insulating material with high
stability. RSC advances (2018), vol. 8, pp. 16232-16242.
24. M. H.I.B. Saad, M. H. B. Ahmad, Y. Z.Arief, H.hmad,
M. Afendi Bin, M. Piah, Electrical Treeing and Morphological
Analysis of Epoxy Nanocomposites with Different Concentrations
of Silica Nanofillers. Advanced Materials Research, (Trans Tech
Publ: 2014), pp 567-572
  25. A. M. Pourrahimi, R. T. Olsson, M. S. Hedenqvist, The
Role of Interfaces in Polyethylene/Metal-Oxide Nanocomposites
for Ultrahigh-Voltage Insulating Materials. Advanced Materials
(2018), vol. 30, p. 1703624.
26. D. Murdany, X. Chen, M. Andersson, D. Liu, U. Gedde,
S. Gubanski, Electrical Treeing Behavior in Polyethylene Filled
with Aluminum Oxide Nanoparticles. In Proceedings of the Nordic
Insulation Symposium (2015).
27. K. Yoshimura, K. Nakano, K. Okamoto, T. Miyake,
Sensors and Actuators A: Physical (2012), vol. 180, pp. 55-62.
28. J. Liu, L. Cui, N. Kong, C. J. Barrow, W. Yang, RAFT
controlled synthesis of graphene/polymer hydrogel with enhanced
mechanical property for pH-controlled drug release. European
polymer journal (2014), vol. 50, pp. 9-17.
29. N. Kamarudin, J. A. Razak, N. Mohamad, N. Norddin,
A. Aman, M. M. Ismail, R. Junid, T. Chew, Mechanical and
Electrical Properties of Silicone Rubber Based Composite for High
Voltage Insulator Application, International Journal of Engineering
& Technology (2018), vol. 7, pp. 452-457.
30. P. Kannan, M. Sivakumar, K. Mekala, S. Chandrasekar,
Resistance Analysis of Nano-Al (OH) 3 Filled Silicone Rubber
Insulating Materials for High Voltage DC Applications. Journal of
Electrical Engineering and Technology (2015), vol. 10, pp. 355-
363.
31. M. Ali, M, A, Choudhry, Preparation and
Characterization of EPDM-Silica Nano / Micro Composites for
High Voltage Insulation Applications. Materials Science-Poland
(2015), vol. 33, pp. 213-219.
32. V.M. Kulik, A.V. Boiko, S.P. Bardakhanov, H. Park,
H.H. Chun, I. Lee, Viscoelastic Properties of Silicone Rubber
with Admixture of Sio2 Nanoparticles. Materials Science and
Engineering: A (2011), vol. 528, pp. 5729-5732.
33. L.H. Meyer, E.A. Cherney, S.H. Jayaram, The Role
of Inorganic Fillers in Silicone Rubber for Outdoor Insulation—
Alumina Tri-Hydrate or Silica. IEEE Electrical Insulation
Magazine (2004), vol. 20, pp. 13-21.
34. B. Dang, J. He, J. Hu, Y. Zhou, Tailored Spp/Silica
Nanocomposite for Ecofriendly Insulation of Extruded HVDC
Cable. Journal of Nanomaterials (2015), vol. 2015.
35. P.S. Liu, T.F. Li, C. Fu, Relationship between electrical
resistivity and porosity for porous metals. Materials Science and
Engineering: A (1999), vol. 268, pp. 208-215.
36. F. Wang, D. Yan, Y. Su, Y. Lu, X. Xia, H. Huang,
Research on the Dielectric Properties of Nano-ZnO/Silicone
Rubber Composites. In IOP Conference Series: Materials Science
and Engineering, (IOP Publishing: 2017), p 012060.
37. N. H. Ismail, M.Mustapha, A Review of Thermoplastic
Elastomeric Nanocomposites for High Voltage Insulation
Application .Polymer Engineering & Science (2018), vol. 58, pp.
E36-E63.
38. M. A. Mazumder, H. Sheardown, A. Al-Ahmad , Functional
Polymers (Springer International Publishing: Cham, 2018), pp
1-49.
39. L. Hongbo, Dielectrics under Electric Field .In Electric Field,
(IntechOpen: 2017).
40. M. Takala, H.Ranta, P. Nevalainen, P. Pakonen, J. Pelto,
M. Karttunen, S Virtanen, V. Koivu, M. Pettersson, B. Sonerud,
Effect of Low Amount of Nanosilica on Dielectric Properties of
Polypropylene. IEEE Transactions on Dielectrics and Electrical
Insulation (2010), vol. 17, pp. 1259-1267.
41. S. M. Haque, J. A. A. Rey, A. A. Mas’ud, Y. Umar,
R.Albarracin, Electrical Properties of Different Polymeric
Materials and their Applications: The Influence of Electric Field.
Properties and Applications of Polymer Dielectrics. InTech (2017),
pp. 41-63.
42. D. Pitsa, G.E. Vardakis, M.G. Danikas, Effect of
Nanoparticles Loading on Electrical Tree Propagation in Polymer
Nanocomposites. In Proceedings of 2011 International Symposium
on Electrical Insulating Materials, (IEEE: 2011), pp 9-11.
43. I. Preda, J. Castellon, S. Agnel, P. Notingher, M.
Fréchette, T. Heid, H. Couderc, N. Freebody ,A.S. Vaughan,
Conduction currents and time to frequency domain transformation
for epoxy resin nanocomposites. In 2013 IEEE International
Conference on Solid Dielectrics (ICSD), (IEEE: 2013), pp 1060-
1063.
44. N.A.M. Jamail, M.A.M. Piah, N.A. Muhamad, Z. Salam,
N.F. Kasri, R.A. Zainir , Q.E. Kamarudin, Effect of Nanofillers on
the Polarization and Depolarization Current Characteristics of New
LLDPE-NR Compound for High Voltage Application. Advances in
Materials Science and Engineering (2014), vol. 2014.
45. M. Aganbegović, M.T. Imani, P. Werle, Electrical
Conductivity in Specially Doped Silicone Layers under DC Stress.
In The International Symposium on High Voltage Engineering,
(Springer: 2019), pp 211-220.
46. S. Appukuttan, K. Joseph, Immobilizing polymer
chains in chlorobutyl rubber nanocomposites. Society of Plastics
Engineers Plastics Research Online (2014), pp. 1-2.
47. I. Franta: Elastomers and rubber compounding
materials. (Elsevier, 2012).
48. H. Mark: Encyclopedia of space science & technology.
(Wiley-Interscience, 2003).
49. M. Ehsani, H. Borsi, E. Gockenbach, G.R. Bakhshandeh,
J. Morshedian, An investigation of dynamic mechanical, thermal,
and electrical properties of housing materials for outdoor polymeric
insulators. European Polymer Journal (2004)40, 2495–2503.
50. I. Saini, A. Sharma, J. Rozra, R. Dhiman, S. Aggarwal,
P. K Sharma, Modification of Structural, Thermal, and Electrical
Properties of PVA by Addition of Silicon Carbide Nanocrystals.
Journal of Applied Polymer Science( 2015), vol. 132.
51. D. Liu, J. Chen, L. Song, A. Lu, Y. Wang, G. Sun,
Parameterization of Silica-Filled Silicone Rubber Morphology: A
Contrast Variation SANS and TEM Study. Polymer (2017), vol.
120, pp. 155-163.