Preparation of Antistatic Organic-Inorganic Nanocomposite Coatings Based on Epoxy-Silane Containing ITO Nanoparticles

Document Type : Research Article

Authors

1 Iranian Academic Center for Education, Culture & Research (ACECR), Fars Branch, Shiraz, Iran

2 Students’ Research Committee, Department of Pharmaceutics and pharmaceutical nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

3 Polymer Science Department, Faculty of Science, Iran Polymer and Petrochemical Institute,Tehran, Iran.

/amnc.2016.4.16.3

Abstract

Several nanocomposite hybrid coatings based on epoxy-silane containing various amounts of Indium
Tin Oxide (ITO) nanoparticles are studied. The hybrid sols are prepared using 3-glycidyloxypropyltrimethoxysilane
(GPTMS) and tetramethoxysilane (TMOS) precursors in the presence of Ethylene
Diamine (EDA) as a curing agent by sol- gel process. The mean particles size of primary sol solution
and solution with ITO nanoparticles was obtained lower than 100 nm by Laser Light Scattering
(DLS) data. With Transtion Electron Microscopy (TEM) the cubic shape and the nanometric size of
the ITO nanoparticles in the hybrid organic-inorganic coatings are shown. The uniformly distributed of
ITO nanoparticles in polymer matrix are examined by Scanning Electron Microscopy (SEM). Also, the
thickness of hybrid coatings on glass substrates was approximately 10 μm. Evaluation of antistatic and
optical properties showed that the surface electrical resistance of coationgs was significantly reduced by
increasing the amount of the ITO nanoparticles and in the range of 1% to 2% wt. of nanoparticles, coatings
have electrical performance and high transparency (more than 80%). With Energy-dispersive X-ray
spectroscopy (EDS) analysis, the presence and appropriate distribution of silicon (Si), Indium (In), Tin
(Sn) elements in hybrid nanocomposite coatings containing ITO nanoparticles was confirmed

Keywords


[1]        Zandi-Zand R., Ershad-Langroudi A, Rahimi A, Organic–inorganic hybrid coatings for corrosion protection of 1050 aluminum alloy, Journal of non-crystalline solids, 351, 2005, 1307-1311.
 
[2]        Zandi-Zand R, Ershad-Langroudi A, Rahimi A, Silica basedorganic–inorganic hybrid nanocomposite coatings for corrosion protection, Progress in organic coatings, 53, 2005, 286-291.
 
[3]        طهماسبی ن، بنیاب ع، مهدویان احدی م، بررسی مقاومت به خوردگی نانوپوشش اپوکسی خاک رس با استفاده از آزمون مه‌نمکی و طیف سنجی امپدانس الکتروشیمیایی، فصلنامه مواد پیشرفته و پوشش‌های نوین، 1، 2، 1391، 3-12.
 
[4]        نادری محمودی ر، صارمی م، اسدی ن، پوشش­های حفاظتی نوین بر پایه‌ی سیلان، فصلنامه مواد پیشرفته و پوشش‌های نوین، 3، 1391، 193-204.
[5]        Farhadyar N, Rahimi A, Langroudi A E, Preparation and characterization of aromatic amine cured epoxy-silica hybrid inorganic-organic coating via in situ sol-gel process, Iranian Polymer Journal, 14, 2005, 155-162.
 
[6]        Rivero P J, Urrutia A, Goicoechea J, Zamarreño C R, Arregui F J, Matías I R, An antibacterial coating based on a polymer/sol-gel hybrid matrix loaded with silver nanoparticles, Nanoscale research letters, 6, 2011, 1-7.
 
[7]        Brusatin G, Innocenzi P, Guglielmi M, Babonneau F, Basic catalyzed synthesis of hybrid sol-gel materials based on 3-glycidoxypropyltrimethoxysilane, Journal of sol-gel science and technology, 26, 2003, 303-306.
 
[8]        Khramov A, Balbyshev V, Voevodin N, Donley M, Nanostructured sol-gel derived conversion coatings based on epoxy-and amino-silanes, Progress in organic coatings, 47, 2003, 207-213.
 
[9]        Al-Dahoudi N, Bisht H, Göbbert C, Krajewski T, Aegerter M A, Transparent conducting, anti-static and anti-static–anti-glare coatings on plastic substrates, Thin solid films, 392, 2001, 299-304.
 
[10]      Yang Y, Zhou Y, Ge J, Yang X, Optically active polyurethane@indium tin oxidenanocomposite: Preparation, characterization and study of infrared emissivity, Materials Research Bulletin, 47, 2012, 2264-2269.
 
[11]      Kim S S, Choi S Y, Park C G, Jin H W, Transparent conductive ITO thin films through the sol-gel process using metal salts, Thin solid films, 347, 1999, 155-160.
 
[12]      Su C, Sheu T K, Chang Y T, Wan M A, Feng M C, Hung W C, Preparation of ITO thin films by sol-gel process and their characterizations, Synthetic Metals, 153, 2005, 9-12.
 
[13]      Sun K, Ouyang J, Polymer solar cells using chlorinated indium tin oxide electrodes with high work function as the anode, Solar Energy Materials and Solar Cells, 96, 2012, 238-243.
 
[14]      Li X, Xu X, Yin X, Li C, Zhang J, A sol-gel method to synthesize indium tinoxide nanoparticles, Particuology, 9, 2011, 471-474.
 
[15]      Psuja P, Hreniak D, Strek W, The influence of sintering temperature and Sn4+ concentration on electrical and optical properties of ITO nanocrystallites,In Journal of Physics: Conference Series, IOP Publishing, 146, 2009, 12012-12020.
 
[16]      Ding X, Yan J, Li T, Zhang L, Transparent conductive ITO/Cu/ITO films prepared on flexible substrates at room temperature, Applied Surface Science, 258, 2012, 3082-3085.
 
[17]      Wolf N, Rydzek M, Gerstenlauer D, Arduini-Schuster M, Manara J, Low temperature processing of redispersed tin doped indium oxide nanoparticle coatings, Thin solid films, 532, 2013, 60-65.
 
[18]      Gilstrap R A, Capozzi C J, Carson C G, Gerhardt R A, Summers C J, Synthesis of a nonagglomerated indium tin oxide nanoparticle dispersion, Advanced Materials, 20, 2008, 4163-4166.
 
[19]      Goebbert C, Nonninger R, Aegerter MA, Schmidt H, Wet chemical deposition of ATO and ITO coatings using crystalline nanoparticles redispersable in solutions, Thin solid films, 351, 1999, 79-84.
 
[20]      Guenther G, Schierning G, Theissmann R, Kruk R, Schmechel R, Baehtz C, Prodi-Schwab A, Formation of metallic indium-tin phase from indium-tin-oxide nanoparticles under reducing conditions and its influence on the electricalproperties, Journal of Applied Physics, 104, 2008, 34501-34510.
 
[21]      Senthilkumar V, Senthil K, Vickraman P, Microstructural, electrical and optical properties of indium tin oxide (ITO) nanoparticles synthesized by co-precipitation method, Materials Research Bulletin, 47, 2012, 1051-1056.
[22]      Xu B Q, Feng R K, Yang B, Deng Y, Effect of Sn4+content on properties of indium tin oxide nanopowders, Transactions of Nonferrous Metals Society of China, 20, 2010, 643-648.
 
[23]      Lippens P, Büchel M, Chiu D, Szepesi C, Indium–tin-oxide coatings for applications in photovoltaics and displays deposited using rotary ceramic targets: Recent insights regarding process stability and doping level, Thin solid films, 532, 2013, 94-97.
 
[24]      Kim J W,Choi J, Hong SJ, Han JI, Kim YS, Effects of the Concentration of Indium-tin-oxide (ITO) Ink on the Characteristics of Directly-printed ITO Thin Films, Journal of Korean Physical Society, 57, 2010, 1794-1798.
 
[25]      Liu J, Wu D, Zeng S, Influence of temperature and layers on the characterization of ITO films, Journal of Materials Processing Technology, 209, 2009, 3943-3948.
 
[26]      Königer T, Münstedt H, Coatings of indium tin oxide nanoparticles on various flexible polymer substrates: Influenceof surface topography and oscillatory bending on electrical properties, Journal of the Society for Information Display, 16, 2008, 559-568.
 
[27]      Chen Q, Boothroyd C, Tan G H, Sutanto N, Soutar A M,  Zeng X T, Silica coating of nanoparticles by the sonogel process, Langmuir, 24, 2008, 650-653.
 
[28]      Jafari M, Rahimi A, Shokrolahi P, Langroudi A E, Synthesis of antistatic hybrid nanocomposite coatings using surface modified indium tin oxide (ITO) nanoparticles, Journal of Coatings Technology and Research, 11 ,2014, 587-593.
 
[29]      زارع حسین آبادی د، ارشاد لنگرودی الف، رحیمی الف، تهیه پوشش‌های لایه نازک نانوذرات آناتاز به روش سل- ژل در دمای پایین و بررسی اثر فتوکاتالیستی آنها، نشریه علمی -پژوهشی علوم و فناوری رنگ، 3، 1388، 121-129.
 
[30]      Abdollahi H., Ershad-Langroudi A., Salimi A., Rahimi A., Anticorrosive Coatings Prepared Using Epoxy–Silica Hybrid Nanocomposite Materials, Industrial & Engineering Chemistry Research, 53, 2014, 10858-10869.
 
[31]      Zand RZ., Langroudi A E, Rahimi A, Synthesis and Characterization of Nanocomposite Hybrid Coatings Based on 3-Glycidoxypropyl-trimethoxysilane and Bisphenol A, Iranian Polymer Journal, 14, 2005, 371-37.
 
[32]      Sunde T.O.L., Einarsrud M.-A., Grande T., Optimisation of chemical solution deposition of indium tin oxide thin films, Thin Solid Films, 573, 2014, 48-55.
[33]      Xu J., Yang Z., Wang H., Xu H., Zhang X., Effect of growth temperature and coating cycles on structural, electrical, optical properties and stability of ITO films deposited by magnetron sputtering, Materials Science in Semiconductor Processing, 21, 2014, 104-110.
 
[34]      Pujilaksono B, Klement U, Nyborg L, Jelvestam U, Hill S, Burgard D, X-ray photoelectron spectroscopy studies of indium tin oxide nanocrystallinepowder, Materials characterization, 54, 2005, 1-7
 
[35]      Cho Y S, Kim H M, Hong J J, Yi G R, Jang S H, Yang S M, Dispersion stabilization of conductive transparent oxide nanoparticles, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 336, 2009, 88-98.
 
[36]      Huffman W A, Chitosan derivatives and inorganic metal oxide particles, U.S. Patent No. 5,213,887, 25 May 1993.
 
[37]      Chau J L H, Lin Y M, Li A K, Su W F, Chang K S, Hsu S L C, & Li T L, Transparent high refractive index nanocomposite thin films, Materials Letters, 61, 2007, 2908-2910.
 
[38]      Han G, Huan S, Han J, Zhang Z, & Wu Q, Effect of acid hydrolysis conditions on the properties of cellulose nanoparticle-reinforced polymethylmethacrylate composites, Materials, 7, 2013, 16-29.