Evaluate the effect of Thiol-capping agent on optical properties of ZnS QDs synthesized at high temperature

Document Type : Research Article

Authors

1 Faculty of Polymer Engineering & Color Tech., Amirkabir University of Technology, Tehran, Iran/Color and Polymer Research Center (CPRC), Amirkabir University of Technology, Tehran, Iran

2 Color and Polymer Research Center (CPRC), Amirkabir University of Technology,Tehran, Iran

3 Color and Polymer Research Center (CPRC), Amirkabir University of Technology, Tehran, Iran

4 Faculty of Polymer Engineering & Color Tech., Amirkabir University of Technology, Tehran, Iran

/amnc.2016.4.16.7

Abstract

In this paper, ZnS quantum dots were synthesized successfully via an aqueous method at high temperature
(75 °C) in the presence of thioglycolic acid as capping agent. In order to investigate the effect of
TGA concentration on the microstructure and optical properties, X-ray diffraction, infrared spectroscopy,
scanning electron microscopy, UV-Vis and photoluminescence spectra were used. The analysis
showed cubic crystal structure of zinc sulfide nanoparticles and relatively uniform spherical particles
with the crystallite size about 3-4 nm. UV-Visible absorption indicated a well-defined absorption at 320
and 311 nm for uncapped and TGA-capped ZnS which confirmed that quantum confinement effect occurred.
Optical behavior of nanoparticles signified excellent light stability over 180 days. Moreover, the
studies indicated that when the synthesizing performs at high temperature, the concentration of capping
agent should be increased up to 100% to optimize optical properties

Keywords


 [1] Li H, Shih W.Y., Shih W.H., Synthesis and characterization of aqueous carboxyl-capped CdS quantum dots for bioapplications, Industrial & Engineering Chemistry Research, 46(7), 2007, 2013-2019.
[2] Fang X., et al., ZnS nanostructures: from synthesis to applications. Progress in Materials Science, 56(2), 2011, 175-287.
[3] Galian R.E., Guardia M.d.l., The use of quantum dots in organic chemistry. TrAC Trends in Analytical Chemistry, 28(3), 2009, 279-291.
[4] Brovelli S., et al., Growth of SnO2 nanocrystals controlled by erbium doping in silica. Nanotechnology, 17(16), 2006, 4031.
[5] Spanhel L., M.A. Anderson, Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. Journal of the American Chemical Society, 113(8), 1991, 2826-2833.
[6] Jamieson T., et al., Biological applications of quantum dots. Biomaterials, 28(31), 2007, 4717-4732.
[7] Battaglia D., Peng X, Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Letters, 2(9), 2002. 2(9): p. 1027-1030.
[8] Kim T., et al., Full-colour quantum dot displays fabricated by transfer printing. Nature Photonics, 5(3), 2011, 176-182.
[9] Li H., et al., A luminescent nanosensor for Hg (II) based on functionalized CdSe/ZnS quantum dots. Microchimica Acta, 160(1-2), 2008, 119-123.
[10] Hu H., Zhang W, Synthesis and properties of transition metals and rare-earth metals doped ZnS nanoparticles. Optical materials, 28(5), 2006, 536-550.
[11] Gaponik N., et al., Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. The Journal of Physical Chemistry B, 106(29), 2002, 7177-7185.
[12] Mehta S., et al., Effect of cationic surfactant head groups on synthesis, growth and agglomeration behavior of ZnS nanoparticles. Nanoscale research letters, 4(10), 2009, 1197-1208.
[13] Koneswaran M., Narayanaswamy R., l-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion. Sensors and Actuators B: Chemical, 139(1), 2009, 104-109.
[14] Xie R., et al., Aqueous-based route toward Fe: ZnSe semiconductor nanocrystals: Synthesis and characterization. Materials characterization, 62(6), 2011, 582-587.
[15] Sobhana S.L., et al., CdS quantum dots for measurement of the size-dependent optical properties of thiol capping. Journal of Nanoparticle Research, 13(4), 2011, 1747-1757.
[16] Brus L., A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. The Journal of chemical physics, 79(11), 1983, 5566-5571.
[17] Denzler, D., M. Olschewski, and K. Sattler, Luminescence studies of localized gap states in colloidal ZnS nanocrystals. Journal of applied physics, 84(5), 1998, 2841-2845.
[18] Sharma M., Kumar S., Pandey O., Study of energy transfer from capping agents to intrinsic vacancies/defects in passivated ZnS nanoparticles. Journal of Nanoparticle Research, 12(7), 2010, 2655-2666.
[19] Salavati-Niasari M, et al., Novel inorganic precursor in the controlled synthesis of zinc blend ZnS nanoparticles via TGA-assisted hydrothermal method. CrystEngComm, 13(8), 2011, 2948-2954.
[20] مژده طاهریان، صباغ الوانی علی اصغر، محمدعلی شکرگزار، فرزانه طباطبایی، شیما موسی خانی، سلیمی رضا، سامعی حسن، سجاد کیانی، ساخت نقاط کوانتومی سولفید روی: بررسی اثر حضور عامل مهارکننده تیولی بر روی خواص فتوفیزیکی و ریزساختار نانو ذرات ، نشریه علمی پژوهشی پوشش‌های نوین و مواد پیشرفته، 5، 1392، 374-367.
[21] Xiao Q., Xiao C., Surface-defect-states photoluminescence in CdS nanocrystals prepared by one-step aqueous synthesis method. Applied Surface Science, 255(16), 2009, 7111-7114.
[22] Zhang W., Lee H.R., Synthesis and optical property of water-soluble ZnS: Cu quantum dots by use of thioglycolic acid. Applied Optics, 49(14), 2010, 2566-2570.