Evaluation the effect of temperature on synthesis and optical properties of nano structured Sn-based perovskite with the as a sensitizer for solar cell application

Document Type : Research Article

Authors

1 Faculty of Polymer Engineering & Color Tech., Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran Color and Polymer Research Center (CPRC), Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran

2 Color and Polymer Research Center (CPRC), Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran

3 Faculty of Polymer Engineering & Color Tech., Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran

AMNC.2017.5.19.4

Abstract

In this paper, the effect of heating treatment in synthesis of perovskite nanostructure is investigated. The results of XRD shows that the perovskite annealed at 120ºC results in the highest purification of CH3NH3SnIxCl3-x crystal structures. Moreover the sample annealed at mentioned temperature posses the highest light absorption. Finally, based on EDX analysis I atoms aren’t as active as Cl for entrance inti the crystal network. Therefore the crystal structure of synthesized sample is CH3NH3SnI0.8Cl2.2.

Keywords

Main Subjects


 [1] Reddy, K.G., et al., On global energy scenario, dye-sensitized solar cells and the promise of nanotechnology. Physical Chemistry Chemical Physics, 2014. 16(15): p. 6838-6858.
[2] Noel, N.K., et al., Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science, 2014. 7(9): p. 3061-3068.
[3] Asim, N., et al., A review on the role of materials science in solar cells. Renewable and Sustainable Energy Reviews, 2012. 16(8): p. 5834-5847.
[4] Liang, L., et al., Enhanced performance of dye-sensitized solar cells based on TiO2 with NIR-absorption and visible upconversion luminescence. Journal of Solid State Chemistry, 2013. 198: p. 459-465.
[5] Sauvage, F., et al., Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%. Acs Nano, 2010. 4(8): p. 4420-4425.
[6] Moosakhani, S., et al., Non-toxic silver iodide (AgI) quantum dots sensitized solar cells. Materials Research Bulletin, 2014. 60: p. 38-45.
[7] کیانی سجاد، صباغ الوانی علی اصغر و همکاران، بهینه‌ساز ی ساختاری و بررسی خواص فتوفیزیکی نانو ذرات سلنید نقره، نشریه علمی پژوهشی مواد پیشرفته و پوشش‌های نوین، 13، 1394، 958-951
[8] Arora, N., et al., High Open-Circuit Voltage: Fabrication of Formamidinium Lead Bromide Perovskite Solar Cells Using Fluorene-dithiophene Derivatives as Hole-Transporting Materials. ACS Energy Letters, 2016.
[9] Wei, Q., et al., The effect of transparent conductive oxide on the performance CH3 NH3 PbI3 perovskite solar cell without electron/hole selective layers. Solar Energy, 2016. 135: p. 654-661.
[10] Kim, H.-S., S.H. Im, and N.-G. Park, Organolead halide perovskite: new horizons in solar cell research. The Journal of Physical Chemistry C, 2014. 118(11): p. 5615-5625.
[11] Koh, T.M., et al., Formamidinium-containing metal-halide: An alternative material for near-IR absorption perovskite solar cells. The Journal of Physical Chemistry C, 2013. 118(30): p. 16458-16462.
[12] Colella, S., et al., MAPbI3-xClx Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties. Chemistry of Materials, 2013. 25(22): p. 4613-4618.
[13] Suarez, B., et al., Recombination study of combined halides (Cl, Br, I) perovskite solar cells. The journal of physical chemistry letters, 2014. 5(10): p. 1628-1635.
[14] Hao, F., et al., Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. Journal of the American Chemical Society, 2014. 136(22): p. 8094-8099.
[15] Sun, S., et al., The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy & Environmental Science, 2014. 7(1): p. 399-407.
[16] Burschka, J., et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013. 499(7458): p. 316-319.
[17] Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. 501(7467): p. 395-398.
[18] Dualeh, A., et al., Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid‐State Solar Cells. Advanced Functional Materials, 2014. 24(21): p. 3250-3258.
[19] Stoumpos, C.C., C.D. Malliakas, and M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic chemistry, 2013. 52(15): p. 9019-9038.
[20] Hao, F., et al., Lead-free solid-state organic-inorganic halide perovskite solar cells. Nature Photonics, 2014. 8(6): p. 489-494.
[21] Noh, J.H., et al., Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano letters, 2013. 13(4): p. 1764-1769.
[22] Ogomi, Y., et al., CH3NH3Snx Pb(1–x)I3 Perovskite solar cells covering up to 1060 nm. The journal of physical chemistry letters, 2014. 5(6): p. 1004-1011.
[23] Curtis, C., A. Clayton, and A. Yankovsky, Edexcel IGCSE Chemistry: Revision Guide. 2011: Pearson Education Limited.