Synthesis and characterization of MWCNT/PEG@CD nanocomposite as carrier for sustained delivery of Acyclovir

Document Type : Research Article

Authors

1 University of Yasooj, Gachsaran

2 University of Jondi Shapoor

3 Payame Noor University

4 Azad University of Gachsaran

AMNC.2017.5.20.3

Abstract

The synthesis of multiwalled carbon nanotubes/poly ethylene glycol and β-cyclodextrin inclusion complex (MWCNT/PEG@ β-CD) as nanoplatform for the loading and delivery of Acyclovir (Acy) drugs is described here. The functionalized multi wall carbon nanotubes (e.g. MWCNT-COOH, MWCNT/PEG and MWCNT/PEG@CD) have been characterized by FTIR and HNMR spectroscopy, electron microscopy (SEM) and differential scanning calorimetry (DSC) to achieve insights on structure, morphology and chemical composition. In this work, the drug binding abilities of MWCNT/PEG@ β-CD nanocomplex towards the Acyclovir (Acy) were proved by UV–vis and DSC experiments. The release studies showed a sustained delivery of Acy without initial burst effect confirming a strong interaction of drug with the nanoplatform sites. Finally, it was approved that the nanocarrier obtained from MWCNT/PEG@CD is able to connect and sustained release of Acy in physiology condition. In agreement with these finding, MWCNT/PEG@CDs hybrid can be proposed as a biocompatible and biodegradation nanotube for loading a variety kind of drug.

Keywords

Main Subjects


[1] SUI, K., GAO, S., WU, W., “Injectable Supramolecular Hybrid Hydrogels Formed by MWNT-grafted-Poly(ethylene glycol) and a-Cyclodextrin”, Journal of Polymer Science: Part A: Polymer Chemistry, 2010, 48, 3145–3151.
[2] Iannazzo, D., Mazzaglia, A., “Cyclodextrin-grafted on multiwalled carbon nanotubes as versatile nanoplatform for entrapment of guanine-based drugs”, Colloids and Surfaces B: Biointerfaces, 2014, 123, 264-270.
[3] Thimma, R. T., Dajan, J., Horst, A., “Pseudopolyrotaxane Formation in the Synthesis of Cyclodextrin Polymers: Effects on Drug Delivery, Mechanics, and Cell Compatibility”, Bioconjugate Chem., 2017, 28 (4), 1048–1058.
[4] Liao, P., Senyang, L., Anchao, F., Jinying, Y., “Polymeric Nanocarriers Based on Cyclodextrins for Drug Delivery: Host–Guest Interaction as Stimuli Responsive Linker”, Mol. Pharmaceutics, 2017, 14 (8), 2475–2486.
[5] Loftsson, T., Stefánsson, E., “Cyclodextrins and topical drug delivery to the anterior and posterior segments of the eye”, International Journal of Pharmaceutics, 2017, 531 (2), 413-423.
[6] Harada, A., Nishiyama, T., Kawaguchi, Y., Okada, M., Kamachi, M., “Preparation and Characterization of Inclusion Complexes of Aliphatic Polyesters with Cyclodextrins”, Macromolecules, 1997, 30, 7115–7118.
[7] Harada, A., Okada, M., Kamachi, M., “Complex formation between poly(oxytrimethylene) and cyclodextrins“, Acta Polym.,1995, 46, 453–457.
[8] Harada, A., Li, J., Kamachi, M., “Preparation and properties of inclusion complexes of polyethylene glycol with alpha-cyclodextrin” Macromolecules, 1993, 26, 5698–5703.
[9] Zhao, S. P., Zhang, L. M., Ma, D., “Supramolecular Hydrogels Induced Rapidly by Inclusion Complexation of Poly(ε-caprolactone)−Poly(Ethylene Glycol)−Poly(ε-caprolactone) Block Copolymers with α-Cyclodextrin in Aqueous Solutions”, J. Phys. Chem. B., 2006, 110, 12225–12229.
[10] Jain,K. K., “Advances in use of functionalized carbon nanotubes for drug design and discovery”, Exp. Opin. Drug Discov., 2012, 7,1029–1037.
[11] Iannazzo, D., Piperno, A., Pistone, A., Grassi, G., “Recent advances in carbon nanotubes as delivery systems for anticancer drugs”, Curr. Med. Chem., 2013, 20, 1333–1354.
[12] Wang, Y., Yang, S.-T., Wang, Y., Liu, Y., Wang, H., “Adsorption and desorption of doxorubicin on oxidized carbon nanotubes” Colloids Surf. B., 2012, 97, 62–69.
[13] Mendes, R.G., Bachmatiuk, A., Büchner, B., Cuniberti, G., Rümmeli, M.H., “Carbon nanostructures as multi-functional drug delivery platforms”, J. Mater. Chem., 2013, B1, 401–428.
[14] Marchesan, S., Prato, M., “Nanomaterials for (Nano) medicine”, ACS Med. Chem. Lett., 2013, 4, 147–149.
[15] Lacerda, L., Russier, J., Pastorin, G., Herrero, M. A., Venturelli, E., Dumortier, E., “Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes”, Biomaterials, 2012, 33, 3334–3343.
[16] Camarena, J. P., Espinoza-Gómez, H., Somanathan, R., Tiznado, H., Vélez-López, E., Romero-Rivera, R., Martinez-Lopez, M. A., “Molecular assembly of multi-wall carbon nanotubes with amino crown ether: Synthesis and characterization”, J. Nanosci. Nanotechnol., 2011, 11, 5539–5545.
[17] Parra, E. J., Rius, F. X., Blondeau, P. A., “A potassium sensor based on non-covalent functionalization of multi-walled carbon nanotubes”, Analyst, 2013, 138, 2698–2703.
[18] A.D. Martin, R.A. Boulos, L.J. Hubble, K.J. Hartlieb, C.L. Raston, Chem. Commun.47 (2011) 7353–7355.
[19] P. Liang, H.Y. Zhang, Z.L. Yu, Y. Liu, J. Org. Chem., 2008, 73, 2163–2168.
[20] Ogoshi, T., Takashima, Y., Yamaguchi, H., Harada, A., “Chemically-responsive sol− gel transition of supramolecular single-walled carbon nanotubes (SWNTs) hydrogel made by hybrids of SWNTs and cyclodextrins”, J. Am. Chem. Soc., 2007, 129, 4878–4879.
[21] Leger, B., Menuel, S., Landy, D., Blach, J.F., Monflier, E., Ponchel, A., “Noncovalent functionalization of multiwall carbon nanotubes by methylated-β-cyclodextrins modified by a triazole group”, Chem. Commun., 2012, 46, 7382–7384.
[22] Zhang, W., Chen, M., Gong, X., Diao, G., “Universal water-soluble cyclodextrin polymer–carbon nanomaterials with supramolecular recognition” Carbon, 2013, 61, 154–163.
[23] Lembo, D., Swaminathan, S., Donalisio, M., Civra, A., Pastero, L., Aquilano, D., Vavia, P., Trotta, F., Cavalli, R., “Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent's antiviral efficacy”, Int. J. Pharm., 2013, 443, 262–272.
[24] Ahmadi Azqhandi, M. H., Farahani, B. V., Dehghani, N., “Encapsulation of methotrexate and cyclophosphamide in interpolymer complexes formed between poly acrylic acid and poly ethylene glycol on multi-walled carbon nanotubes as drug delivery systems”