Ligand-Assisted Synthesis of Plasmonic Ag Nanowires: A Molecular Dynamics Study on Anisotropic Growth

Document Type : Research Article

Authors

1 Color&Polymer Research Center, Amirkabir University of Technology

2 Color & Polymer Research Center, Amirkabir University of Technology

3 Department of Physics, Sharif University of Technology

/amnc.2018.6.23.2

Abstract

This study demonstrates a solution-phase polyvinylpyrrolidone (PVP)-assisted approach to prepare shape-controlled plasmonic Ag nanostructures in ethylene glycol (EG) solution via heterogeneous nucleation (in the presence of FeCl3). Combining with experimental study, molecular dynamics (MD) simulation is also used to understand the underlying principles governing nanowire growth through the analysis of the interaction energies between crystal surfaces and capping agent as well as atom density profile. The simulation results indicate that the PVP concentration, as a capping ligand and shape-directing agent, plays a key role in the anisotropic confinements during growth process of nanowires because the interaction energy between PVP molecules and silver crystals (through Ag : O coordination) on (100) and (110) planes is stronger, which leads to oriented attachment of crystals and the anisotropic growth on the (111) planes. Furthermore, the plasmonic properties of the as-synthesized nanowires are confirmed by UV-Visible spectra displaying a dual-peak absorption ascribed to the transverse dipole resonance (longer wavelength, λ=420 nm) and the transverse quadrupole resonance (shorter wavelength, λ=380 nm).

Keywords

Main Subjects


1. T. J. Antosiewicz, M. Käll, A Multiscale Approach to Modeling Plasmonic Nanorod Biosensors, J. Phys. Chem. C. 120 (2016) 20692-20701.
2. Q. Tang, H. Shen, H. Yao, Y. Jiang, C. Zheng, K. Gao, Preparation of silver nanowire/AZO composite film as a transparent conductive material, Ceram. Int. 43 (2017) 1106-1113.
3. G. Lu, L. Hou, T. Zhang, J. Liu, H. Shen, Ch. Luo, and Q. Gong, Plasmonic Sensing via Photoluminescence of Individual Gold Nanorod, J. Phys. Chem. C. 116 (2012) 25509-25516.
4. H. Liu, T. Liu, X. Dong, R. Hua, Z. Zhu, Preparation and enhanced photocatalytic activity of Ag-nanowires@SnO2 core–shell heterogeneous structures, Ceram. Int. 40 (2014) 16671-16675.
5. W. Wang, Q. Yang, F. Fan, H. Xu, Z. L. Wang, Light Propagation in Curved Silver Nanowire Plasmonic Waveguides, Nano Lett. 11 (2011) 1603-1608.
6. C. H. Kim, S.H. Cha, S. C. Kim, M. Song, J. Lee, W. S. Shin, S.J. Moon, J. H. Bahng, N. A. Kotov, S.H. Jin, Silver Nanowire Embedded in P3HT:PCBM for High-Efficiency Hybrid Photovoltaic Device Applications, ACS Nano. 5 (2011) 3319-3325.
7. N. R. Jana, Gram-Scale Synthesis of Soluble, Near-Monodisperse Gold Nanorods and Other Anisotropic Nanoparticles, Small. 1 (2005) 875-882.
8. B. Nikoobakht, M. A. El-Sayed, Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method, Chem. Mater. 15 (2003) 1957-1962.
9. K. I. Requejo, A. V. Liopo, P. J. Derry, E. R. Zubarev, Accelerating Gold Nanorod Synthesis with Nanomolar Concentrations of Poly(vinylpyrrolidone), Langmuir. 33 (2017) 12681-12688.
10. X. Liu, J. Yao, J. Luo, X. Duan, Y. Yao, T. Liu, Effect of Growth Temperature on Tailoring the Size and Aspect Ratio of Gold Nanorods,, Langmuir. 33 (2017) 7479-7485.
11. N. R. Jana, L. Gearheart, Catherine J. Murphy, Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods, J. Phys. Chem. B. 105 (2001) 4065-4067.
12. Y. Sun, B. Mayers, Th. Herricks, Y. Xia, Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence, Nano Letters. 3 (2003) 955-960.
13. Y. Sun, Y. Xia, Large scale synthesis of uniform silver nanowires through a soft, self-seeding polyol process, Adv. Mater. 14 (2002) 833-837.
14. J. Q, Hu, Qing Chen, Zhao-Xiong Xie, Guo-Bin Han, R. H. Wang, B. Ren, Y. Zhang, Z. L. Yang, Z. Q. Tian, A simple and effective route for the synthesis of crystalline silver nano rods and nanowires, Adv. Funct. Mat. 14 (2004) 183-189.
15. J. Yue, X. Jiang, Q. Zeng, A. Yu, Experimental and numerical study of cetyltrimethylammonium bromide (CTAB)-directed synthesis of goethite nanorods, Solid State Sci. 12 (2010) 1152-1159.
16. H. Zhu, M. Chen, J. Yue, L. Liang, X. Jiang, Experimental and theoretical studies on the role of silver in gold nanorods growth, J. Nanopart. Res. 19 (2017) 183-195.
17. Q. Zeng, X. Jiang, A. Yu, G. (Max) Lu, Growth mechanisms of silver nanoparticles: a molecular dynamics study, Nanotech.  18 (2007) 035708-035715.
18. L. Chen, S.Lam, Q. Zeng, R. Amal, A. Yu, Effect of Cation Intercalation on the Growth of Hexagonal WO3 Nanorods, J. Phys. Chem. C. 116 (2012) 11722-11727.
19. Z. Peng, H. You, H. Yang, Composition-Dependent Formation of Platinum Silver Nanowires, ACS Nano. 4 (2010), 1501-1510.
20. J. Yu, M.L. Becker, G.A. Carri, A Molecular Dynamics Simulation of the Stability-Limited Growth Mechanism of Peptide-Mediated Gold-Nanoparticle Synthesis, Small. 18 (2010) 2242-2245
21. H. Xu, C. Kan, J. Wei, Y.Ni, C. Miao, C. Wang, S. Ke, D. Shi, Synthesis and Plasmonic Property of Ag Nanorods, Plasmonic. 11 (2016) 1645-1652.
22. A. K Ojha, S. Forster, S. Kumar, S. Vats, S. Negi, I. Fischer, Synthesis of well-dispersed silver nanorods of different aspect ratios and their antimicrobial properties against gram positive and negative bacterial strains, J. Nanobiotech. 11 (2013) 42-49.
23. R. L. Zong, J. Zhou, Q. Li, B. Du, B. Li, M. Fu, X.W. Qi, L.T. Li, Synthesis and Optical Properties of Silver Nanowire Arrays Embedded in Anodic Alumina Membrane, J. Phys. Chem. B. 108 (2004) 16713-16716.
24. S. Linic, P. Christopher, D. B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy, Nat. Mater. 10 (2011) 911-921.
25. Y. Jin, K. Wang, Y. Cheng, Q. Pei, Y. Xu, and F. Xiao, Removable Large-Area Ultrasmooth Silver Nanowire Transparent Composite Electrode, ACS Appl. Mater. Interfaces. 9 (2017) 4733-4741.
26. J. H. Yim, S.y. Joe, C. Pang, K. M. Lee, H. Jeong, J.Y. Park, Y. H. Ahn, J. C. de Mello, S. Lee, Fully Solution-Processed Semitransparent Organic Solar Cells with a Silver Nanowire Cathode and a Conducting Polymer Anode, ACS Nano. 8 (2014) 2857-2863.
27. Y. Cui, I.Y. Phang, R. S. Hegde, Y. H. Lee, X. Yi Ling, Plasmonic Silver Nanowire Structures for Two-Dimensional Multiple-Digit Molecular Data Storage Application, ACS Photonics. 1 (2014) 631-637.
28. Y. Ahn, H. Lee, D. Lee, Y. Lee, Highly Conductive and Flexible Silver Nanowire-Based Microelectrodes on Biocompatible Hydrogel, ACS Appl. Mater. Interfaces. 6 (2014) 18401-18407.
29. H. Zhang, P. Yilmaz, J. O. Ansari, F. F. Khan, R. Binions, S. Krause, S. Dunn, Incorporation of Ag nanowires in CuWO4 for improved visible light-induced photoanode Performance, J. Mater. Chem. A, 3 (2015) 9638-9644.
30. J. M. Renoirt, M. Debliquy, J. Albert, A. Ianoul, C. Caucheteur, Surface Plasmon Resonances in Oriented Silver Nanowire Coatings on Optical Fibers, J. Phys. Chem. C. 118 (2014) 118 11035-11042.
31. K. E. Korte, S. E. Skrabalak, Y. Xia, Rapid synthesis of silver nanowires through a CuCl- or CuCl2 -mediated polyol process, J. Mater. Chem. 18 (2008) 437-441.
32. M. R. Johan, N. A. K. Aznan, S. T. Yee, I. H. Ho, S. W. Ooi, N. D. Singho, F. Aplop, Synthesis and Growth Mechanism of Silver Nanowires through Different Mediated Agents (CuCl2 and NaCl) Polyol Process, J. Nanomater. 2014 (2014), 1-7.
33. J. Chen, T. Herricks, M. Geissler and Y. Xia, Single-Crystal Nanowires of Platinum Can Be Synthesized by Controlling the Reaction Rate of a Polyol Process, J. Am. Chem. Soc. 126 (2004) 10854-10855.