Comparison between constant current electrochemical and pulse current approach in reduction of graphene oxide on nickel-nickel oxide foam

Document Type : Research Article

Authors

1 University of Tehran, Faculty of Engineering, School of Metallurgy and Materials Engineering

2 University of Tehran, Faculty of Engineering, School of Metallurgy and Materials Engineering, Tehran, Iran

/amnc.2019.7.28.4

Abstract

This study introduced a novel, nontoxic, scalable, two-step method for the fabrication of nickel-nickel oxide foam/electrochemically reduced graphene oxide (ERGO) electrodes. This procedure included drop cast and graphene oxide (GO) reduction by constant current and pulse current methods. The structure of achieved was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy. Electrochemical impedance spectroscopy (EIS) measurements are carried out to study the electrochemical behavior of ERGO/Ni-NiO foam electrodes. SEM images revealed that the wrinkling degree of the synthesized graphene layers increased in pulse current method. The Raman test results confirmed that the current density pulse method has more defects than the constant current. The XRD also showed that the interlayer spacing between the graphene sheets was higher in the pulsed current method. The ERGO/Ni-NiO foam fabricated by pulse current method provided the smallest ESR value, and thus the fastest charge/discharge process. The desirable electrochemical performance of ERGO/Ni-NiO foam electrode was mainly attributed to its irregular porous structure provided a large specific area, short ion diffusion distances and transport pathways for electrons. High-performance ERGO/Ni-NiO foam hybrid electrode materials made it as a reliable and accessible candidate for application in electrochemical energy storage.

Keywords

Main Subjects


[1]. M.inagaki, H. Konno, and O. Tanaike, Carbon materials for electrochemical capacitors. J. power. Sources. 195 (2010), 7880-7903.
[2]. A.Davies, A. Yu, Material advancements in supercapacitors: from activated carbon to carbon nanotube and graphene. Can. J. Chem. Eng. 89(2011), 1342-1357.
[3]. K.kakaei, One-pot electrochemical synthesis of graphene by the exfoliation of graphite powder in sodium dodecyl sulfate and its decoration with platinum nanoparticles for methanol oxidation. Carbon. 51 (2013), 195-201
[4]. S.‏W.Ting, A.‏P.‏Periasamy, S.‏M.Chen, R.‏Saraswathi.‏Direct electrochemistry of catalase immobilized at electrochemically reduced graphene oxide modified electrode for amperometric H2O2 biosensor. Int. J. Electrochem. Sci, 6 (2011), 4438-4453
[5]. X.‏Y.Peng, X.‏X. Liu, D.Diamond, K. T. Lau, Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor. Carbon. 49(2011), 3488-3496.‏
[6]. Y.Tang, N. Wu, S.Luo, C. Liu, K.Wang, L. Chen, One‐Step Electrodeposition to Layer‐by‐Layer Graphene–Conducting‐Polymer Hybrid Films. Macromol. rapid .comm. 33 (2012),1780-1786.‏
[7]. H.Zhang, X.Zhang, D.Zhang, X.Sun, H.Lin, C.Wang, Y. Ma, One-step electrophoretic deposition of reduced graphene oxide and Ni‏(OH)‏2 composite films for controlled syntheses supercapacitor electrodes. J. Phys. Chem. B. 117 (2012), 1616-1627.‏
[8]. S.Bittolo Bon, L.Valentini, J. M.Kenny, L.Peponi, R.Verdejo, M.‏A.‏Lopez‐Manchado, Electrodeposition of transparent and conducting graphene/carbon nanotube thin films. phys status solidi A. 207 (2010), 2461-2466.‏
[9]. C.‏Y.Su, A.‏Y.‏Lu, Y.Xu, F.‏R.Chen, A.‏N.Khlobystov, L.‏J.‏Li, High-quality thin graphene films from fast electrochemical exfoliation. ACS nano 5 (2011), 2332-2339.‏
[10]. M.Zhou, Y.Wang, Y.Zhai, J.Zhai, W.Ren, F.Wang, S. Dong. Controlled synthesis of large‐area and patterned electrochemically reduced graphene oxide films." Chem–A Euro. J15 (2009), 6116-6120.‏
[11]. X.Zhang, D. Zhang, Y.Chen, X.Sun, Y.Ma, Electrochemical reduction of graphene oxide films: Preparation, characterization and their electrochemical properties. Chinese.sci.bull. 57 (2012): 3045-3050.‏
[12]. H.Yu, J.He, L. Sun, S.Tanaka, B.Fugetsu, Influence of the electrochemical reduction process on the performance of graphene-based capacitors. Carbon. 51 (2013), 94-101.
[13] م. میرزایی، چ. دهقانیان، سنتز فوم نیکل-اکسیدنیکل به روش الکتروشیمیایی و کاربرد آن در ابرخازن، نشریه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، 1397.
[14]. M.Kundu, L. Liu, Direct growth of mesoporous MnO2 nanosheet arrays on nickel foam current collectors for high-performance pseudocapacitors. J. Power Sources. 243 (2013),676-681.‏
[15]. C.Shanthi, S.Barathan, R.Jaiswal, R. M.Arunachalam, S.Mohan, The effect of pulse parameters in electro deposition of silver alloy. Mater. Lett. 62 (2008), 4519-4521.
[16]. W.Zhou, X.Cao, Z.Zeng, W.Shi, Y.Zhu, Q.Yan, , ... & H.Zhang, "One-step synthesis of Ni‏3‏S‏2 nanorod@ Ni‏(OH)‏2 nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors." Energ. Environ. Sci. 6 (2013), 2216-2221.
[17]. G.Zhou, D.‏W.Wang, L.‏C.Yin, N.Li, F. Li, H. M. Cheng, Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS nano. 6 (2012), 3214-3223.‏
[18]. T‏.Öznülüer, D.Ümit, H.‏Ö.Doğan. Fabrication of underpotentially deposited Cu monolayer/electrochemically reduced graphene oxide layered nanocomposites for enhanced ethanol electro-oxidation." Appl. Catal. B: Environ. 235 (2018), 56-65.‏
[19]. A. B.López-Oyama, M. A.Domínguez-Crespo, A. M.Torres-Huerta, , E.Onofre-Bustamante, R.Gámez-Corrales, N.Cayetano-Castro, A. C. Ferrel-Álvarez, Dataset on electrochemical reduced graphene oxide production: Effect of synthesis parameters. Data in brief, 21(2018) 598-603.
[20] I. H. Lo, J. Y.Wang, K. Y. Huang, J. H.Huang, W. P. Kang, "Synthesis of Ni (OH)‏2 nanoflakes on ZnO nanowires by pulse electrodeposition for high-performance supercapacitors." J. Power. Sources‏.308 (2016): 29-36.‏
[21]. M.Liu, J.Chang, Y.Bai, J.Sun, An advanced asymmetric supercapacitor based on a novel ternary graphene/nickel/nickel oxide and porous carbon electrode with superior electrochemical performance." RSC. Adv. 5 (2015), 91389-91397.‏