Study of the Sound Absorption Behavior and Cell walls Roughness of Flexible Polyurethane Foams

Document Type : Research Article

Authors

1 Tehran Province, Tehran, District 6, 424 Hafez Ave تهران- خیابان حافظ-پلاک 424

2 Color & Polymer Research Center, Amirkabir University of Technology

/amnc.2018.6.24.4

Abstract

The relationship between sound absorption behavior and cell wall roughness of flexible polyurethane foams (FPUFs) was investigated in this article. FPUFs were prepared by methylene diphenyl diisocyanate (MDI), different synthesized linear aliphatic saturated polyesters, and the other ingredients. Water content and isocyanate index of all FPUFs were set to 5% and 110, respectively. Acoustic dampening behavior and cell wall roughness of FPUFs were investigated using an impedance tube device and atomic force microscopy ‎‎(AFM), respectively. Also, physical properties such as density and open cell content were measured. According to the results, by increasing the cell wall roughness, sound absorption efficiency increased up to 43.07%, maximum sound absorption coefficient (α) reached 0.98 and the area under the sound absorption curve was 3300 Hz due to the increase of the reflection, scattering, and absorption of sound waves. Finally, the results revealed that FPUFs with the roughness of 170-180 nm can be a ‎promising candidate for using as sound insulating materials in various environments.

Keywords

Main Subjects


[1] J. G. Gwon, S. K. Kim, J. H. Kim, Sound absorption behavior of flexible polyurethane foams with distinct cellular structures, Mater. Des. 89 (2016) 448–454.
[2] K. Gao, J. A. W. van Dommelen, M. G. D. Geers, Investigation of the effects of the microstructure on the sound absorption performance of polymer foams using a computational homogenization approach, A/Solids, Eur. J. Mech. 61 (2017) 330–344.
[3] A. E. Tiuca, H. Vermeşana, T. Gabora, O. Vasileb, Improved sound absorption properties of polyurethane foam mixed with textile waste, Energy Procedia 85 (2016) 559–565.
[4] G. Sung, J. H. Kim, Effect of high molecular weight isocyanate contents on manufacturing polyurethane foams for improved sound absorption coefficient, Korean J. Chem. Eng. 34 (2017) 1222–1228.
[5] L. N. Shafigullin, S. Yu. Yurasov, G. R. Shayakhmetova, A. N. Shafigullina, E. D. Zharin, Sound-absorbing polyurethane foam for the auto industry, Russ. Eng. Res. 37 (2017) 372–374.
[6] J. H. Park, K. S. Minn, H. R. Lee, S. H. Yang, Ch. B. Yu, S. Y. Pak, Ch. S. Oh, Y. S. Song, Y. J. Kang, J. R. Youn, Cell openness manipulation of low-density polyurethane foam for efficient sound absorption, J. Sound Vib. 406 (2017) 224–236.
[7] G. Sung, S. K. Kim, J. W. Kim, J. H. Kim, Effect of isocyanate molecular structures in fabricating flexible polyurethane foams on sound absorption behavior, Polym. Test. 53 (2016) 156–164.
[8] J. G. Gwon, S. K. Kim, J. H. Kim, Development of cell morphologies in manufacturing flexible polyurethane urea foams as sound absorption materials, J. Porous Mater. 23 (2016) 465–473.
[9] P. Cinelli, I. Anguillesi, A. Lazzeri, Green synthesis of flexible polyurethane foams from liquefied lignin, Eur. Polym. J. 49 (2013) 1174-1184.
[10] Zh. Lana, A. R. Daga, R. White house, S. Mc Carthy, Structure–properties relations in flexible polyurethane foams containing a novel bio-based crosslinker, Polym. 55 (2014) 2635-2644.
[11] D. Simón, A.de Lucas, J. F. Rodríguez, A. M. Borreguero, Glycolysis of high resilience flexible polyurethane foams containing polyurethane dispersion polyol, Polym. Degrad. Stab. 133 (2016) 119-130.
[12] M. Oliviero, L. Verdolotti, M. Stanzione, M. Lavorgna, S. Iannace, M. Tarello, A. Sorrentino, Bio-based flexible polyurethane foams derived from succinic polyol: Mechanical and acoustic performances, Appl. Polym. 134, (2017) 45113.
[13] J. P. Arenas, F. Ugarte, A note on a circular panel sound absorber with an elastic boundary condition, Appl. Ac. 114 (2016) 10-17.
[14] A. A. Mahmoud, E. A. Ader Nasr, A. A. Hamed Maamoun, The influence of polyurethane foam on the insulation characteristics of mortar pastes, J. Miner. Mater. Charact. Eng. 5 (2017) 49-61.
[15] Y. Ch. Chuang, T. T. Li, Ch. H. Huang, Ch. L. Huang, Ch. W. Lou, Y. Sh. Chen, J. H. Lin, Protective rigid fiber-reinforced polyurethane foam composite boards: Sound absorption, drop-weight impact and mechanical properties, Fiber. Polym. 17 (2016) 2116–2123.
[16] H. A., B. Abbès, F. Abbès, Y. Li, Y. Q. Guo, Prediction of acoustic properties of polyurethane foams from the macroscopic numerical simulation of foaming process, Appl. Ac. 120 (2017) 129–136.
[17] N. Gama, R. Silva, A. P.O. Carvalhoc Artur Ferreirad, A. Barros-Timmons, Sound absorption properties of polyurethane foams derived from crude glycerol and liquefied coffee grounds polyol, Polym. Test. 62 (2017) 13–22.
[18] G. K. O. D'Amore, M. Caniato, A. Travan, G. Turco, L. Marsich, A. Ferluga, Ch. Schmid, Innovative thermal and acoustic insulation foam from recycled waste glass powder, J. Clean. Prod. 165 (2017) 1306–1315.
[19] G. Sung, J. H. Kim, Influence of filler surface characteristics on morphological, physical, acoustic properties of polyurethane composite foams filled with inorganic fillers, Compos. Sci. Tech. 146 (2017) 147–154.
[20] A. Hasani Baferani, A.A. Katbab, A.R. Ohadi, The role of sonication time upon acoustic wave absorption efficiency, microstructure, and viscoelastic behavior of flexible polyurethane/CNT nanocomposite foam, Eur. Polym. J. 90 (2017) 383-391.
[21] R. Verdejo, R. Stämpfli, M. Alvarez-Lainez, S. Mourad, M. A. Rodriguez-Perez, P. A. Brühwiler, M. Shaffer, Enhanced acoustic damping in flexible polyurethane foams filled with carbon nanotubes, Compos. Sci. Tech. 69 (2009) 1564-1569.
[22] X. H. Yang, S. W. Ren, W. B. Wang, X. Liu, F. X. Xin, T. J. Lu, A simplistic unit cell model for sound absorption of cellular foams with fully/semi-open-cells, Compos. Sci. Tech. 118 (2015) 276-283.
[23] H. Zhou, B. Li, G. Huang, Sound absorption characteristics of polymer microparticles, Appl. Polym. 101 (2006) 2675–2679.
[24] G. Sunga, J. W. Kim, J. H. Kima, Fabrication of polyurethane composite foams with magnesium hydroxide filler for improved sound absorption, J. Ind. Eng. Chem. 44 (2016) 99–104.
[25] J.T. Garrett, R. Xu, J. Cho, J. Runt, Phase separation of diamine chain-extended poly (urethane) copolymers: FT-IR spectroscopy and phase transitions, Polym. 44 (2003) 2711–2719.
[26] L. Ning, W. De-Ning, Y. Sheng-Kang, Crystallinity and hydrogen bonding of hard segments in segmented poly (urethane-urea) copolymers, Polym.37 (1996) 3577–3583.
[27] A.M. Heintz, D.J. Duffy, C.M. Nelson, Y. Hua, S.L. Hsu, W. Suen, C.W. Paul, A spectroscopic analysis of the phase evolution in polyurethane foams, Macromol. 38 (2005) 9192–9199.
[28] L. Ning, W. De-Ning, Y. Sheng-Kang, Hydrogen-bonding properties of segmented polyether poly (urethane-urea) copolymer, Macromol. 30 (1997) 4405–4409.
[29] L. Ugarte, A. Saralegi, R. Fern andez, L. Martín, M. Corcuera, A. Eceiza, Flexible polyurethane foams based on 100% renewably sourced polyols, Ind. Crop. Prod. 62 (2014) 545–551.
[30] H. Xia, M. Song, Z. Zhang, M. Richardson, Microphase separation, stress relaxation, and creep behavior of polyurethane nanocomposites, J. Appl. Polym. Sci. 103 (2007) 2992–3002.