Crystallization behavior of polypropylene/graphene nanoplatelets nanocomposite fibers II. Non-isothermal crystallization kinetics

Document Type : Research Article

Authors

1 Department of Textile and Leather, Standard Research Institute, Karaj, Iran

2 Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran

/amnc.2019.8.30.3

Abstract

Both physical and mechanical properties of a semi-crystalline polymer are highly related to the crystallization behavior and morphology development during processing. In the present work, non-isothermal crystallization of polypropylene/graphene nanoplatelets (PP/GnPs) nanocomposite fibers containing 0.1, 0.5, and 1% GnPs was investigated by differential scanning calorimetry (DSC). The Ozawa and Mo methods were used to fit the primary stage of non-isothermal crystallization of the samples. Moreover, the nucleation activity and the crystallization activation energy of GnPs in the PP matrix were calculated by Dobreva’s approach and Friedman’s method, respectively. The results show that the crystallization peak shifted to the lower temperatures with increasing cooling rate. Contrary to Ozawa method, it was observed that Mo approach could describe the non-isothermal crystallization process of PP and PP/GnPs nanocomposite fibers satisfactory. Furthermore, the maximum and minimum nucleation activity was observed for PP/G-0.1 and PP/G-1 nanocomposite fibers, respectively. Crystallization activation energy decreased in the presence of GnPs, indicating that it is easier for the PP/GnPs to crystallize. Although GnPs work as a nucleating agent, they also act as a barrier to molecular mobility and reduce the growth rate, resulting in a more depressed crystallization for PP/GnPs nanocomposite fibers.

Keywords


[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Electric Field Effect in Atomically Thin Carbon Films, Science, 306 (2004), 666-669.
[2] C. Lee, X. Wei, J.W. Kysar, J. Hone. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 321 (2008), 385-388.
[3] A. Hussein, B. Kim. Graphene/polymer nanocomposites: The active role of the matrix in stiffening mechanics, Compos. Struct., 202 (2018), 170-181.
[4] K. Hu, D.D. Kulkarni, I. Choi, V.V. Tsukruk. Graphene-polymer nanocomposites for structural and functional applications, Prog. Polym. Sci., 39 (2014), 1934-1972.
[5] Y. Cui, S.I. Kundalwal, S. Kumar. Gas barrier performance of graphene/polymer nanocomposites, Carbon, 98 (2016), 313-333.
[6] M. Silva, N.M. Alves, M.C. Paiva. Graphene-polymer nanocomposites for biomedical applications, Polym. Adv. Technol., 29 (2018), 687-700.
[7] M. Giulio. Graphene-based Polymer Nanocomposites: Recent Advances and Still Open Challenges, Current Graphene Science, 1 (2017), 16-25.
[8] H. Kim, A.A. Abdala, C.W. Macosko. Graphene/Polymer Nanocomposites, Macromolecules, 43 (2010), 6515-6530.
[9] J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff. Graphene-based polymer nanocomposites, Polymer, 52 (2011), 5-25.
[10] E. Erbas Kiziltas, A.J. Duguay, A. Kiziltas, B. Nazari, J.W. Nader, D.J. Gardner, T.S. Rushing. Rheological and thermal properties of exfoliated graphite nanoplatelets-filled impact modified polypropylene nanocomposites, Polym. Compos., 39 (2018), E1512-E1519.
[11] F. Wang, L.T. Drzal, Y. Qin, Z. Huang. Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites, J. Mater. Sci., 50 (2015), 1082-1093.
[12] J. Xing, Z. Xu, F. Ruan, B. Deng. Nonisothermal crystallization kinetics, morphology, and tensile properties of polyphenylene sulfide/functionalized graphite nanoplatelets composites, High Perform. Polym., 31 (2019), 282-293.
[13] R.J. Young, M. Liu, I.A. Kinloch, S. Li, X. Zhao, C. Vallés, D.G. Papageorgiou. The mechanics of reinforcement of polymers by graphene nanoplatelets, Compos. Sci. Technol., 154 (2018), 110-116.
[14] A. Hussein, B. Kim. Micromechanics based FEM study on the mechanical properties and damage of epoxy reinforced with graphene based nanoplatelets, Compos. Struc., 215 (2019), 266-277.
[15] S.M. Hamidinejad, R.K.M. Chu, B. Zhao, C.B. Park, T. Filleter. Enhanced Thermal Conductivity of Graphene Nanoplatelet–Polymer Nanocomposites Fabricated via Supercritical Fluid-Assisted in Situ Exfoliation, ACS Appl. Mater. Interfaces, 10 (2018), 1225-1236.
[16] U. Kilic, S.M. Daghash, O.E. Ozbulut, Mechanical Characterization of Polymer Nanocomposites Reinforced with Graphene Nanoplatelets. Springer International Publishing, Cham, 2018, 689-695.
[17] T. Xia, D. Zeng, Z. Li, R.J. Young, C. Vallés, I.A. Kinloch. Electrically conductive GNP/epoxy composites for out-of-autoclave thermoset curing through Joule heating, Compos. Sci. Technol., 164 (2018), 304-312.
[18] B. Mayoral, E. Harkin-Jones, P.N. Khanam, M.A. AlMaadeed, M. Ouederni, A.R. Hamilton, D. Sun. Melt processing and characterisation of polyamide 6/graphene nanoplatelet composites, RSC Adv., 5 (2015), 52395-52409.
[19] S.V. Polschikov, P.M. Nedorezova, A.N. Klyamkina, A.A. Kovalchuk, A.M. Aladyshev, A.N. Shchegolikhin, V.G. Shevchenko, V.E. Muradyan. Composite materials of graphene nanoplatelets and polypropylene, prepared by in situ polymerization, J. Appl. Polym. Sci., 127 (2013), 904-911.
[20] M.C. Mistretta, L. Botta, A.D. Vinci, M. Ceraulo, F.P. La Mantia. Photo-oxidation of polypropylene/graphene nanoplatelets composites, Polym. Degrad. Stab., 160 (2019), 35-43.
[21] A.P. Bafana, X. Yan, X. Wei, M. Patel, Z. Guo, S. Wei, E.K. Wujcik. Polypropylene nanocomposites reinforced with low weight percent graphene nanoplatelets, Compos. Part B Eng., 109 (2017), 101-107.
[22] J.-Z. Liang. Effects of tension rates and filler size on tensile properties of polypropylene/graphene nano-platelets composites, Compos Part B Eng., 167 (2019), 241-249.
[23] J.-Z. Liang. Effects of graphene nano-platelets size and content on tensile properties of polypropylene composites at higher tension rate, J. Compos. Mater., 52 (2018), 2443-2450.
[24] S.M. Park, D.S. Kim. Preparation and physical properties of polypropylene nanocomposites with dodecylated graphene nanoplatelets, Compos. Interface., 24 (2017), 1-11.
[25] M.-Y. Shen, T.-Y. Chang, T.-H. Hsieh, Y.-L. Li, C.-L. Chiang, H. Yang, M.-C. Yip. Mechanical Properties and Tensile Fatigue of Graphene Nanoplatelets Reinforced Polymer Nanocomposites, J. Nanomater., 2013 (2013), 1-9.
[26] P. Song, Z. Cao, Y. Cai, L. Zhao, Z. Fang, S. Fu. Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties, Polymer, 52 (2011), 4001-4010.
[27] M. El Achaby, F.-E. Arrakhiz, S. Vaudreuil, A. el Kacem Qaiss, M. Bousmina, O. Fassi-Fehri. Mechanical, thermal, and rheological properties of graphene-based polypropylene nanocomposites prepared by melt mixing, Polym. Compos., 33 (2012), 733-744.
[28] C.I. Ferreira, C. Dal Castel, M.A.S. Oviedo, R.S. Mauler, Isothermal and non-isothermal crystallization kinetics of polypropylene/exfoliated graphite nanocomposites, Thermochim. Acta, 553 (2013), 40-48.
[29] J.-Z. Xu, Y.-Y. Liang, H.-D. Huang, G.-J. Zhong, J. Lei, C. Chen, Z.-M. Li. Isothermal and nonisothermal crystallization of isotactic polypropylene/graphene oxide nanosheet nanocomposites, J. Polym. Res., 19 (2012), 9975.
[30] S. Zhao, F. Chen, Y. Huang, J.-Y. Dong, C.C. Han. Crystallization behaviors in the isotactic polypropylene/graphene composites, Polymer, 55 (2014), 4125-4135.
[31] S. Chen, Y. Liu, C. He, X. Yin, L. Wang, H. Wang, C. Xu, J. Kang, Y. Zhang. Non-Isothermal Crystallization Behavior of β-Nucleated Isotactic Polypropylene/Multi-Walled Carbon Nanotube Composites with Different Melt Structures, Polym. Sci. Series A, 60 (2018), 81-89.
[32] J.-B. Chen, J.-Z. Xu, H. Pang, G.-J. Zhong, L. Xu, H. Tang, J.-H. Tang, Z.-M. Li. Crystallization of isotactic polypropylene inside dense networks of carbon nanofillers, J. Appl. Polym. Sci., 131 (2014), doi: 10.1002/app.39505.
[33] D. Tang, S. Li, J. Yang, J. Su, Q. Yang, M. Kong, Y. Huang, X. Liao. Nonisothermal and isothermal crystallization behavior of isotactic polypropylene/chemically reduced graphene nanocomposites, Polym. Compos. 38 (2017), E342-E350.
[34] F. Shehzad, S.P. Thomas, M.A. Al-Harthi. Non-isothermal crystallization kinetics of high density polyethylene/graphene nanocomposites prepared by in-situ polymerization, Thermochim. Acta, 589 (2014), 226-234.
[35] M. Kodal, H. Sirin, G. Ozkoc. Non-isothermal crystallization kinetics of PEG plasticized PLA/G-POSS nanocomposites, Polym. Compos., 38 (2017), 1378-1389.
[36] M. Run, H. Song, C. Yao, Y. Wang. Crystal morphology and nonisothermal crystallization kinetics of short carbon fiber/poly(trimethylene terephthalate) composites, J. Appl. Polym. Sci., 106 (2007), 868-877.
[37] M. He, S. Zong, Y. Zhou, H. Guo, Q. Fan. Non-isothermal crystallization kinetics of reactive microgel/nylon 6 blends, Chin. J. Chem. Eng., 23 (2015), 1403-1407.
[38] Y.N. Gupta, S.M. Abbas, R.B. Sharma, D.K. Setua. Crystallization kinetics of polyurethane nanocomposites, J. Therm. Anal. Calorim., 119 (2015), 1393-1405.
[39] W. Hao, W. Yang, H. Cai, Y. Huang. Non-isothermal crystallization kinetics of polypropylene/silicon nitride nanocomposites, Polym. Testing, 29 (2010), 527-533.
[40] Q. Yuan, S. Awate, R.D.K. Misra. Nonisothermal crystallization behavior of polypropylene–clay nanocomposites, Eur. Polym. J., 42 (2006), 1994-2003.
[41] T. Liu, Z. Mo, H. Zhang. Nonisothermal crystallization behavior of a novel poly(aryl ether ketone): PEDEKmK, J. Appl. Polym. Sci., 67 (1998), 815-821.
[42] A. Dobreva, I. Gutzow, Activity of substrates in the catalyzed nucleation of glass-forming melts. I. Theory, J. Non-Cryst. Solids, 162 (1993), 1-12.
[43] G.Z. Papageorgiou, D.S. Achilias, D.N. Bikiaris, G.P. Karayannidis. Crystallization kinetics and nucleation activity of filler in polypropylene/surface-treated SiO2 nanocomposites, Thermochim. Acta, 427 (2005), 117-128.
[44] B. Fillon, J.C. Wittmann, B. Lotz, A. Thierry. Self-nucleation and recrystallization of isotactic polypropylene (α phase) investigated by differential scanning calorimetry, J. Polym. Sci. Part B Polym. Phys., 31 (1993), 1383-1393.
[45] C. Marco, G. Ellis, M.A. Gómez, J.M. Arribas. Comparative study of the nucleation activity of third-generation sorbitol-based nucleating agents for isotactic polypropylene, J. Appl. Polym. Sci., 84 (2002), 2440-2450.
[46] H.L. Friedman. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic, J. Polym. Sci. Part C Polym. Sympos., 6 (1964), 183-195.