Evaluation of Carbon Nano Webs produced by Needleless and Conventional Electro-spun PAN-MWCNT Nanofibers Precursor

Document Type : Research Article

Authors

1 Department of Textile Engineering, University of Guilan, Rasht, Iran

2 Textile Engineering Dept., Faculty of Eng., University of Guilan, Rasht, Iran

/amnc.2020.8.31.1

Abstract

Polyacrylonitrile (PAN) Nanofibers and Multi-walled carbon nanotubes (MWCNTs) were fabricated by using the needleless and conventional electrospinning. CNT-Activated carbon nanofibers prepared by stabilization, carbonization, and activation processes and evaluated by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) and BET method. SEM analysis showed that by increasing the concentration of MWCNT the average nanofibers diameter changed for pure and activated nanofibers and electrical conductivity and viscosity of nanofibers were increased. DSC plots showed different enthalpy and cyclization degree of embedding of MWCNTs in PAN nanofibers. Also, the generated nanofibers from disk shape nozzles were finer with a narrower distribution than produced by the cylinder type. The nanofibers produced by needleless method provided larger diameter nanofibers with less uniformity and higher production rate comparing to the conventional method. FTIR Spectroscopy and XRD studies showed that PAN-MWCNT nanofibers exhibited higher crystallinity compared to PAN nanofibers and the crystallite size was decreased. The XRD analysis revealed that different diffraction angles (2θ) in stabilized and carbonized PAN-MWCNT nanofibers that shifted to the smaller one by increasing of carbon nanotubes contents. The BET results indicated the improvement of porosity in MWCNT-ACNF nanofibers comparing to ACNF nanofibers and diameter of pore was decreased.

Keywords


 
[1] Niu. H, and T. Lin, Fiber generators in needleless electrospinning. nanomaterials. 2012)2012(, 12.
[2] Lukas. D, A. Sarkar, and P. Pokorny, Self-organization of jets in electrospinning from free liquid surface: a generalized approach. Applied Physics. (2008). 103(8), 084309.
[3] Niu. H, X. Wang, and T. Lin, Needleless electrospinning: influences of fibre generator geometry. Journal of the Textile Institute. (2012). 103(7), 787-794.
[4] Simm. W, et al, Fibre fleece of electrostatically spun fibres and methods of making same. 1979, Google Patents.
[5] Jirsak. O, et al, Textiles containing at least one layer of polymeric nanofibres and method of production of the layer of polymeric nanofibres from the polymer solution through electrostatic spinning. 2008, Google Patents.
[6] Jirsak. O, et al, Method of nanofibres production from a polymer solution using electrostatic spinning and a device for carrying out the method. 2009, Google Patents.
[7] Niu. H, T. Lin, and X. Wang, Needleless electrospinning. I. A comparison of cylinder and disk nozzles. Journal of applied polymer science. (2009). 114(6), 3524-3530.
[8] Yarin. A, and E. Zussman, Upward needleless electrospinning of multiple nanofibers. Polymer. (2004). 45(9), 2977-2980.
[9] Liu. Y, J.-H. He, and J.-Y. Yu, Bubble-electrospinning: a novel method for making nanofibers. Journal of Physics: Conference Series. (2008). IOP Publishing.
[10] Pilehrood. M.K, P. Heikkilä, and A. Harlin, Preparation of carbon nanotube embedded in polyacrylonitrile (pan) nanofibre composites by electrospinning process. AUTEX Research Journal. (2012). 12(1), 1-6.
[11] SalehHudin. H.S, et al, Multiple-jet electrospinning methods for nanofiber processing: A review. Materials and Manufacturing Processes. (2018). 33(5), 479-498.
[12] Barhoum. A, et al, Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Applied Materials Today.17(2019), 1-35.
[13] نصوری. ک، ک. دوستدار، ا. موسوی شوشتری، بررسی شکل گیری نانوالیاف در فرآیند الکتروریسی چندنازله. مواد پیشرفته و پوشش های نوین،3(12). (1394)، 808-799.
[14] Ali. U, et al, Needleless electrospinning using sprocket wheel disk spinneret. Journal of materials science. (2017). 52(12), 7567-7577
[15] Shaid. A, et al, Needleless Electrospinning and Electrospraying of Mixture of Polymer and Aerogel Particles on Textile. Advances in Materials Science and Engineering. 2018(2018).
[16] Song. J, et al, Origami meets electrospinning: a new strategy for 3D nanofiber scaffolds. Bio-Design and Manufacturing. (2018). 1(4), 254-264.
[17] Ahmad. A, et al, Toothed wheel needleless electrospinning: a versatile way to fabricate uniform and finer nanomembrane. Journal of Materials Science, 1-14.
[18] Magaz. A.n, et al, Porous, aligned, and biomimetic fibers of regenerated silk fibroin produced by solution blow spinning. Biomacromolecules. (2018). 19(12), 4542-4553.
[19] Deneff. J.I, and K.S. Walton, Production of metal-organic framework-bearing polystyrene fibers by solution blow spinning. Chemical Engineering Science. 203(2019), 220-227.
[20] Spitalsky. Z, et al, Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Progress in polymer science. (2010). 35(3), 357-401.
[21] Khare. R, and S. Bose, Carbon nanotube based composites-a review. Journal of minerals and Materials Characterization and Engineering. (2005). 4(01), 31.
[22] Zhang. H, et al, Synthesis of a novel composite imprinted material based on multiwalled carbon nanotubes as a selective melamine absorbent. Journal of agricultural and food chemistry. (2011). 59(4), 1063-1071.
[23] Sahoo. N.G, et al, Polymer nanocomposites based on functionalized carbon nanotubes. Progress in polymer science. (2010). 35(7), 837-867.
[24] مداح. ب، بهبود جذب گاز سولفید هیدروژن در غشاهای نانولیفی پلی یورتان با استفاده از نانولوله‌های کربنی اصلاح شده با نانوذرات اکسید فلزی. مواد پیشرفته و پوشش های نوین، 8(30). (1398)، 2138-2130
[25] علیزاده, م., م. حسن زاده, س. محتشمی, بهبود رفتار جذب صوت فوم پلی یورتان نرم تقویت شده با نانوالیاف پلیمری، نانولوله کربنی و نانوذرات. مواد پیشرفته و پوشش های نوین,( 2019) 8(29) p. 2072-2080.
[26] یزدانی. س، ف. محبوبی، اثر غلظت نانولوله های کربنی روی مقاومت سایشی پوشش های نیکل-بور-نانولوله کربنی. مواد پیشرفته و پوشش های نوین، 7(27). (1397)، 1924-1917
[27] نوری. م، اصلاح سطحی الیاف ابریشم توسط نانو لوله‌های کربنی فعال شده. مواد پیشرفته و پوشش های نوین،7(25). (1397)، 1763-1772
[28] Karim. S.A, et al, Mechanical properties and the characterization of polyacrylonitrile/carbon nanotube composite nanofiber. Arabian Journal for Science and Engineering. )2018(. 43(9), 4697-4702.
[29] Mohamed. A, et al, Photocatalytic degradation of organic dyes and enhanced mechanical properties of PAN/CNTs composite nanofibers. Separation and Purification Technology.182(2017), 219-223.
[30] Song. Y, et al, Preparation and characterization of highly aligned carbon nanotubes/polyacrylonitrile composite nanofibers. Polymers. (2017). 9(1), 1.
[31] Gissinger. J.R, et al, Nanoscale structure–property relationships of polyacrylonitrile/CNT composites as a function of polymer crystallinity and CNT diameter. ACS applied materials & interfaces. (2017). 10(1), 1017-1027.
[32] Kaur. N, V. Kumar, and S.R. Dhakate, Synthesis and characterization of multiwalled CNT–PAN based composite carbon nanofibers via electrospinning. SpringerPlus. (2016). 5(1), 483.
[33] Eskizeybek. V, A. Yar, and A. Avcı, CNT-PAN hybrid nanofibrous mat interleaved carbon/epoxy laminates with improved Mode I interlaminar fracture toughness. Composites Science and Technology. 157(2018), 30-39.
[34] Khan. W.S, et al, Chemical and thermal investigations of electrospun polyacrylonitrile nanofibers incorporated with various nanoscale inclusions. Journal of Thermal Engineering. (2017). 3(4), 1375-1390.
[35] Cai. J, S. Chawla, and M. Naraghi, Microstructural evolution and mechanics of hot-drawn CNT-reinforced polymeric nanofibers. Carbon. 109(2016), 813-822.
[36] Song. Y, and L. Xu, Permeability, thermal and wetting properties of aligned composite nanofiber membranes containing carbon nanotubes. International Journal of Hydrogen Energy. (2017). 42(31), 19961-19966.
[37] Zhang. H, et al, Rheological behavior of amino-functionalized multi-walled carbon nanotube/polyacrylonitrile concentrated solutions and crystal structure of composite fibers. Polymers. (2018). 10(2), 186.
[38] Park. S.-H, et al, MWCNT/mesoporous carbon nanofibers composites prepared by electrospinning and silica template as counter electrodes for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry. 246(2012), 45-49.
[39] Im. J.S, S.-J. Park, and Y.-S. Lee, Preparation and characteristics of electrospun activated carbon materials having meso-and macropores. Journal of colloid and interface science. (2007). 314(1), 32-37.
[40] Inagaki. M, Y. Yang, and F. Kang, Carbon nanofibers prepared via electrospinning. Advanced Materials. (2012). 24(19), 2547-2566.
[41] Lee. H.-M, K.-H. An, and B.-J. Kim, Effects of carbonization temperature on pore development in polyacrylonitrile-based activated carbon nanofibers. Carbon letters. (2014). 15(2), 146-150.
[42] Lee. H.-M, et al, Effects of pore structures on electrochemical behaviors of polyacrylonitrile-based activated carbon nanofibers by carbon dioxide activation. Carbon Letters. (2014). 15(1), 71-76.
[43] Zussman. E, et al, Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon. (2005). 43(10), 2175-2185.
[44] Esrafilzadeh. D, M. Morshed, and H. Tavanai, An investigation on the stabilization of special polyacrylonitrile nanofibers as carbon or activated carbon nanofiber precursor. Synthetic metals, (2009). 159(3-4), 267-272.
[45] Liu. Y, H.G. Chae, and S. Kumar, Gel-spun carbon nanotubes/polyacrylonitrile composite fibers. Part II: Stabilization reaction kinetics and effect of gas environment. Carbon. (2011). 49(13), 4477-4486.
[46] Liu. Y, H.G. Chae, and S. Kumar, Gel-spun carbon nanotubes/polyacrylonitrile composite fibers. Part I: Effect of carbon nanotubes on stabilization. Carbon. (2011). 49(13), 4466-4476.
[47] İnce Yardımcı. A, Development of carbon nanotube embedded polyacrilonitrile/polypyrrole electrospun nanofibrous scaffolds. (2017).
[48] Han. Y, Theoretical study of thermal analysis kinetics. (2014).
[49] Ozawa. T, A new method of analyzing thermogravimetric data. Bulletin of the chemical society of Japan. (1965). 38(11), 1881-1886.
[50] Causin. V, et al, A quantitative differentiation method for acrylic fibers by infrared spectroscopy. Forensic science international. (2005). 151(2-3), 125-131.
[51] Li. Z, et al, X-ray diffraction patterns of graphite and turbostratic carbon. Carbon. (2007). 45(8), 1686-1695.
[52] Gu. S.-Y, Q.-L. Wu, and R. Jie, Preparation and surface structures of carbon nanofibers produced from electrospun PAN precursors. New Carbon Materials. (2008). 23(2), 171-176.