Non-isothermal crystallization kinetics of thermoplastic vulcanizate based on polypropylene/ polybutadiene rubber in the presence of polybutadiene modified with acrylic acid as compatibilzer

Document Type : Research Article

Authors

1 Polymer Engineering Department, Faculty of Petroleum and Gas (Gachsaran), Yasouj University, Gachsaran 75813-56001, Iran

2 university student

3 Arak University

/amnc.2019.8.31.6

Abstract

Non-isothermal crystallization kinetics of Polypropylene (PP) melt as a continuous phase of thermoplastic elastomers (TPEs) based on polypropylene / polybutadiene rubber (TPE1: PBR/PP) and polybutadiene rubber / acrylated-polybutadiene compatibizer / polypropylene (TPE2: PBR/ Ac-PBR /PP) as well as their the corresponding thermoplastic vulcanizate(TPV) samples (TPV1 and TPV2) were investigated using Ozawa's kinetic model. The results of the DSC data and the Ozawa model show that the Ac-PBR compatibilizer, increases the onset and the final temperature of crystallization and make the crystallization region narrower. Dynamic vulcanization also results in shifting the onset and the final crystallization temperatures to lower values. The temperature (Tc) and the half-time for crystallization (t_(1/2)) of all blends decrease with increasing cooling rate. The crystallization rate constant and the ozawa model exponent (m) for four different temperatures (110, 115, 120 and 130 C °) were obtained by linear regression method. The exponent of ozawa model changes with increasing degree of molten/crystal conversion. While the “m” value for the pure PP varies from (1.4 at 110℃) to (3 at 120 ℃), these values for TPE1 range from (1.7 at 110℃) to (3.3 at 120℃) and for TPE2 are higher and varies from (1.1 at 110℃) to (4 at 125℃). The maximum value of the crystallization rate constant (KC ) for all blends occurs at approximately 50% relative crystallinity; the highest crystallization rate constants obtains for TPE2.

Keywords


[1] Sun, H., B. Yu, and J. Sheng, Isothermal crystallization and miscibility of isotactic polypropylene/poly (cis-butadiene) rubber blends. Journal of Macromolecular Science, Part B, 2010. 49(2): p. 335-344.
[2] Salavati, M. and A.A. Yousefi, Polypropylene–clay micro/nanocomposites as fused deposition modeling filament: effect of polypropylene-g-maleic anhydride and organo-nanoclay as chemical and physical compatibilizers. Iranian Polymer Journal, 2019: p. 1-10.
[3] Girones, J., et al., Crystallization of polypropylene in the presence of biomass-based fillers of different compositions. Polymer, 2017. 127: p. 220-231.
[4] Fan, Q., et al., Non-isothermal crystallization kinetics of polypropylene and hyperbranched polyester blends. Chinese Journal of Chemical Engineering, 2015. 23(2): p. 441-445.
[5] Sheng, J., et al., Blends of polypropylene with poly (cis‐butadiene) rubber. I. Phase structure and morphology of blends. Journal of applied polymer science, 1997. 64(12): p. 2265-2272.
[6] Ma, G.Q., et al., Blends of polypropylene with poly (cis‐butadiene) rubber. II. Small‐angle X‐ray scattering studies of the phase structure of immiscible blends of polypropylene with poly (cis‐butadiene) rubber. Journal of applied polymer science, 2002. 83(10): p. 2088-2094.
[7] Sutar, H., et al., High Density Polyethylene (HDPE) and Polypropylene (PP) Polyblend: An Experimental Approach. 2019.
[8] Lin, C., et al., Melting behavior and non‐isothermal crystallization kinetics of copolyamide 6/12. Polymer Crystallization, 2019. 2(4): p. e10054.
[9] مشک ریز, ع., ر. درویشی, and ا. براتی, تهیه و بررسی خواص مکانیکی ترموپلاستیک پخت شده بر پایه آمیزه پلی پروپیلن/لاستیک پلی بوتادی در حضور عامل سازگار کننده پلی بوتادین اصلاح شده با آکریلیک اسید. مواد پیشرفته و پوشش های نوین, 2019. 8(30): p. 2187-2180.
[10] Sarfraz, M., Z. ur Rehman, and M. Ba-Shammakh, Pursuit of electroconducting thermoplastic vulcanizates: activated charcoal-filled polypropylene/ethylene–propylene–diene monomer blends with upgraded electrical, mechanical and thermal properties. Polymer Bulletin, 2019. 76(4): p. 2005-2020.
[11] Gharzouli, N., et al., Effects of nanosilica filler surface modification and compatibilization on the mechanical, thermal and microstructure of PP/EPR blends. Journal of Adhesion Science and Technology, 2019. 33(5): p. 445-467.
[12] Li, J., et al., Development of high damping natural rubber/butyl rubber composites compatibilized by isobutylene-isoprene block copolymer for isolation bearing. Express Polymer Letters, 2019. 13(8).
[13] Coran, A. and R. Patel, Rubber-thermoplastic compositions. Part VIII. Nitrile rubber polyolefin blends with technological compatibilization. Rubber Chemistry and Technology, 1983. 56(5): p. 1045-1060.
[14] Hejna, A., et al., Towards understanding the role of peroxide initiators on compatibilization efficiency of thermoplastic elastomers highly filled with reclaimed GTR. Polymer Testing, 2019. 73: p. 143-151.
[15] Thitithammawong, A., et al., The use of reclaimed rubber from waste tires for production of dynamically cured natural rubber/reclaimed rubber/polypropylene blends: Effect of reclaimed rubber loading. Journal of Metals, Materials and Minerals, 2019. 29(2).