Microstructural, Electrochemical and Biocompatibility Investigation of TiO2 Coating on AZ91D by magnetron sputtering method

Document Type : Research Article

Authors

Department of Metallurgy and Materials Engineering, Karaj Branch, Islamic Azad University Karaj, Iran.

/amnc.2020.8.31.4

Abstract

In this study, due to the poor corrosion resistance of Mg alloys in aquatic environments, TiO2 ceramic coating applied by the magnetron sputtering technique to enhance the corrosion resistance and biocompatibility of AZ91D alloy. The Microstructural studies by field emission scanning electron microscopy (FESEM) and X-Ray diffraction (XRD) analysis showed that the coating formed uniformly with semi spherical morphology containing TiO2, Mg2TiO4 and MgTi2O5 spinels, so that above of the substrate was Ti diffiusion affected. The polarization corrosion test in simulated body fluid (SBF) solution showed that applying the coating by reducing the corrosion current by about 100 times improves the corrosion resistance of the magnesium substrate so that MTT results show that density and number of cells on the coated sample is higher than substrate without coating due to cell joint stronger. The viability of MG67 cells on the samples increased from 77% in the substrate to 89% in the coated sample.

Keywords


[1] B. Heublein, R. Rohde, V. Kaese, M. Niemeyer, W. Hartung, A. Haverich, Biocorrosion of magnesium alloys: A new principle in cardiovascular implant technology. Heart. 89(2003), 651–656.
[2] F. Witte, V. Kaese, H. Switzer, A. L. Meyer., C. J. Wirth, H. Windhag, In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. 26(2005), 3557–3563.
[3] F. Witte, J. Fischer, J. Nellesen, H. Crostack, V. Kaese, A. Pischd, F. Beckmanne, Windhagen, In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials. 27(2006), 1013–1020.
[4] J. C. Gao, S. Wu, L. Y. Qiao, Y. Wang, Corrosion behavior of magnesium and its alloy in simulated body fluid. The Journal of Clinical Rehabilitative Tissue Engineering Research. 11(2007), 3584–3586.
[5] L. Xu, G. Yu, E. Zhang, F. Pan, K. Yang, In vivo corrosion behavior of Mg–Mn–Zn alloy for bone implant application, Journal of Biomedical Materials Research Part A. 83(2007), 703–711.
[6] G. L. Song, Control of biodegradation of biocompatible magnesium alloys. Corrosion Science. 49(2007), 1696–1701.
[7] J. C. Gao, S. Wu, L. Y. Qiao, Y. Wang, Corrosion behavior of Mg and Mg-Zn alloys in simulated body fluid. Transactions of Nonferrous Metals Society of China. 18(2008), 588–592.
[8] A. Pietak, P. Mahoney, G. J. Dias, M. P. Staiger, Bone-like matrix formation on magnesium and magnesium alloys. Journal of Materials Science Materials in Medicine. 19(2008), 407–415.
[9] Z. Li, X. Gu, S. Lou, Y. Zheng, The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials. 29(2008), 1329–1344.
[10] J. Vormann, Magnesium: Nutrition and metabolism. Molecular Aspects of Medicine, 24(2003), 27–37.
[11] K. Yeong, K. Lee, B. Kim, Effect of Mg ion on formation of bone-like apatite on the plasma modified titanium surface. Surface and Coatings Technology. 228(2013), 404–407.
[12] M. E. Maguire, J. A. Cowan, Magnesium chemistry and biochemistry. Biometals, 15(2002), 203–210.
[13] T. Okuma, Magnesium and bone strength. Nutrition, 17(2001), 679–680.
[14] R. K. Rude, H. E. Gruber, Magnesium deficiency and osteoporosis animal and human observations. Journal of Nutritional Biochemistry. 15(2004), 710–716.
[15] Y. Shi, M. Qi, Y. Chen, P. Shi, MAO-DCPD composite coating on Mg alloy for degradable implant applications. Materials Letters, 65(2011), 2201-2204.
[16] M. P. Staiger, A. M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials. 27(2006), 1728–1734.
[17] F. Wu, J. Wei, H. Guo, F. P. Chen, H. Hong, C. Liu, Self-setting bioactive calcium-magnesium phosphate cement with high strength and degradability for bone regeneration. Acta Biomaterialia, 4(2008), 1873–1884.
[18] W. Xu, W. Y. Hu, M. H. Li, Q. Q. Ma, Sol-gel derived Ha/TiO2 Double coating on titanium scaffolds for orthopaedics applications. Journal of Trans. Nonferrous. Met. Soc China. 16(2006), 209-219.
[19] Q. Zhao, X. Guo, X. Dang, J. Hao, J. Lai, K. Wang, Preparation and properties of composite MAO/ECD coatings on magnesium alloy. Colloids and Surfaces B. Biointerfaces. 102 (2013) 321– 326.
[20] H. Wang, R. Akid, M. Gobara, Scratch-resistant anticorrosion sol–gel coating for the protection of AZ31magnesium alloy via a low temperature sol–gel route. Corrosion. Sci. 52 (2010) 2565–2570.
[21] H. Hoche, C. Blawert, E. Broszeit, C. Berger, Galvanic corrosion properties of differently PVD-treated magnesium die cast alloy AZ91. Surface Coatings Tech. 193(2005) 223– 229.
[22] Ch. Christoglou, N. Voudouris, G.N. Angelopoulos, M. Pant, W. Dahl, Deposition of aluminium on magnesium by a CVD process. Surface Coatings Tech. 184(2004) 149–155.
[23] Q. Wang, K. Spencer, N. Birbilis, M.-X Zhang, The influence of ceramic particles on bond strength of cold spray composite coatings on AZ91 alloy substrate. Surface. Coatings Tech. 205(2010) 50–56.
[24] L. Zhu, W. Li, D. Shan, Effects of low temperature thermal treatment on zinc and/or tin plated coatings of AZ91D magnesium alloy. Surface Coatings Tech. 201(2006) 2768–2775.
[25] P. J. Kelly & R. D. Arnell, Magnetron sputtering: a review of recent developments and applications. Vacuum. 56(2000), 159-172.
[26] C. Padmaprabu, P. Kuppusami, A.L.E. Terrance, E. Mohandas, V.S.Raghunathan, S. Banerjee, M.K. Sanyal, Microstructural characterisation ofTiAl thin films grown by DC magnetron co-sputtering technique. Mater Lett. 43(2000) 106–113.
[27] پ. مهدیزاده، ح. رضایی، س. م. حسینعلی پور، ج. جوادپور، پوشش دهی دی اکسید تیتانیوم بر روی فولاد 316 L به روش غوطه وری سل - ژل با هدف کاربرد در مهندسی پزشکی، نهمین سمینار ملی مهندسی سطح و عملیات حرارتی، تهران، انجمن علوم و تکنولوژی سطح ایران، دانشگاه علم و صنعت ایران،۱۳۸۷.
[28] M. Eliza, L. Benea, J. P. Celis, Novel Nano-TiO2 layer preparation on Ti-6Al-4V support alloy and their characterization. Nanomaterials. Biostructures. 7(2012) 933-939.
[29] E. E. Sukuroglu, S. Sukuroglu, K. Akar, Y. Totik, I. Efeoglu, E. Arslan,The effect of TiO2 coating on biological NiTi alloys after micro-arc oxidation treatment for corrosion resistance. Proc. Inst. Mech. Eng. H. 231(2017) 699-704.
[30] Standard Guide for Preparation of Metal Surfaces for Adhesive Bonding, ASTM International, West Conshohocken, PA, D2651-01, 2001,
[31] R. I. Freshney, R, Culture of Animal Cells: A Manual of Basic Technique. John Wiley & Sons, Inc, 2005.
[32] Y. Suzuki1, Y. Shinoda, Magnesium dititanate (MgTi2O5) with pseudobrookite structure: a review. Sci. Technol. Adv. Mater. 12 (2011) 034301.
[33] N. Ishiia, Y. Okamoto, Y. Suzuki, Semiconductor MgTiO3, MgTi2O5 and Mg2TiO4double-oxide electrodes for dye-sensitized solar cells. International Letters of Chemistry, Physics and Astronomy. 46 (2015) 9-15.
[34] Y .Y. Lu, R. Kotoka, J. P. Ligda, B. B. Cao, S. N. Yarmolenko, B. E. Schuster, Q. Wei, The microstructure and mechanical behavior of Mg/Ti multilayers as a function of individual layer thickness. Acta Materialia. 63(2014), 216-231.
[35] C. Chen, Y. Cheng, Q. Dai, H. Song, Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications. scientifice report. 5(2015) 17684.
[36] س. فیروزآبادی، ک. دهقانی، م. نادری، ف. محبوبی، بررسی چقرمگی شکست و حساسیت به نرخ کرنش لایه نازک نیترید تانتالوم تولید شده به روش کندوپاش مغناطیسی واکنشی، فرآیندهای نوین در مهندسی مواد، 31( 89)، 103-113.
[37] م. علیشاهی، ف. محبوبی، س. م موسوی، بررسی رفتار خوردگی پوشش تانتالم لایه نشانی شده به روش کندوپاش مگنترون، فرآیندهای نوین در مهندسی مواد، 12(97)، 139-151.
[38] م. ک. خویی، ر. سلطانی، م. ح. سهی، محمود، تاثیر فرآیند لیزر بر رفتار خوردگی آلیاژ منیزیم AZ31 پاشش حرارتی شده با پودر WC-Co-Cr، علوم و مهندسی سطح، (1395)29، 45-54.
[39] A. BOBY, U. T .S. Pillai, and B. C. PAI, Investigation on Lead and Yttrium Addition on the Microstructure and Mechanical Properties of AZ91 Magnesium Alloy. Sci. Tech. India. 7(2013) 273-280.