Investigation the Effect of Voltage on the Microstructure and Corrosion Behavior of 5083 Aluminum Alloy Anodizing Coating

Document Type : Research Article

Authors

1 Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran

2 polymer engineering/ amirkabir university

3 Professor of Materials Engineering, Isfahan University of Technology, Iran

/amnc.2021.10.37.3

Abstract

For decades, aluminum alloys have been known as one the most vital materials utilized in diverse fields of industry. In spite of significance, Al alloys can be easily exposed to corrosion. In this study, it has been tried to investigate anodic oxide coating made by hard anodizing of 5083 aluminum alloy in sulfuric acid at the temperature of 0 ºC and different voltages (20, 27 and 35 V). Subsequently, all samples were characterized using X- Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Field Emission Scanning Electron Microscope (FESEM). Low angle XRD results showed that the amorphous alumina coatings were formed in the surface of the samples. SEM images showed that the coatings are porous which is directly related and affected by anodizing voltage. FESEM images of fracture surfaces were indicant of formation and growth of oxide nano-cells in the cross section of the coatings. In order to investigate the properties of the coatings, micro-hardness, roughness and thickness measurement was carried out. Results showed that micro-hardness, roughness and thickness of the coatings increase by increasing the anodizing voltage. Furthermore, potentio dynamic polarization and electrochemical impedance spectroscopy (EIS) tests were performed. Electrochemical analysis proved that by increasing the anodizing voltage, corrosion resistance of the samples declined due to increasing the porosities on the surface of the coatings.

Keywords

Main Subjects


 [1] A. Imran, M. M. Quazi, E. Zalnezhad, Ahmed AD
Sarhan, N. L. Sukiman, and M. Ishak. Hard anodizing of aerospace AA7075-T6 aluminum alloy for improving surface properties. Transactions of the Indian
Institute of Metals 72. (2019), 2773-2781.
[2] A.Gawad, A. Soha, M.Walid. Osman, A. M.
Fekry. Characterization and corrosion behavior of anodized aluminum alloys for military industries applications in artificial seawater. Surfaces and Interfaces
14 (2019), 314-323.
[3] J. Konieczny, K. Labisz, M. Polok-Rubiniec, A.
Włodarczyk-Fligier. Influence of aluminium alloy
anodizing and casting methods on structure and functional properties. Archives of Metallurgy and Materials 61 (2016).
[4] Mandal, Prosun, S. C. Mondal. Investigation of
Electro-Thermal property for Cu-MWCNT composite coating on anodized 6061 aluminium alloy. Applied Surface Science 454 (2018),138-147.
[5] LUO, Yuting, J. WEI, Z. JIAO. Review on Anodizing Technologies for the Fabrication of Superhydrophobic Aluminum-based Surfaces. Materials
Review 11 (2016),16.
[ ]6ل. عدل نسب، ا. مقصودی، بررسی پارامترهای موثر در تشکیل
ساختارهای نانومتخلخل و منظم اکسید آلومینیوم آندایزشده، نشریه
علمی پژوهشی مواد پیشرفته و پوششهای نوین، (-1541 ،10)1396
.1531
[7] Stacey, Michael, C. Bayliss. Aluminium and Durability: reviewed by inspection and testing. Materials Today: Proceedings 2 (2015),5088-5095.
[8] Y.Ma, , X. Zhou, Y. Liao, X. Chen, C. Zhang, H.
Wu, Z. Wang, W. Huang. Effect of anodizing parameters on film morphology and corrosion resistance
of AA2099 aluminum-lithium alloy. Journal of The
Electrochemical Society 163 (2016),369.
[9] Lee, S.Jun, S. J. Kim. Effect of Applied Current
Density on Cavitation-Erosion Characteristics for
Anodized Al Alloy. Journal of nanoscience and nanotechnology 18 (2018),1365-1368.
[ ]10سلندری، الف، براتی دربند، ق، احتشام زاد، م، تاثیر دانسیته جریان
آندایزینگ بر خواص مکانیکی و خوردگی آلیاژ آلومینیوم ،6061نشریه
علمی- پژوهشی علوم و مهندسی خوردگی، ( ،7)1396شماره دوم، ص
.54،1396-45
[11] R.K. Choudhary, P. Mishra, V. Kain, K. Singh, S.  Kumar, and J. K. Chakravartty. Scratch behavior of
aluminum anodized in oxalic acid: effect of anodizing potential. Surface and Coatings Technology 283
(2015),135-147.
[12] Mahmud, A. Hadi, A. S. Habiballah, A. M. M.
Jani. The effect of applied voltage and anodisation
time on anodized aluminum oxide nanostructures. In
Materials Science Forum 819 (2015),103-108.
[13] Park, Il-Cho, S.J. Kim. Electrochemical damage characteristics of anodized 5083 aluminum alloy with flow rate in seawater. Journal of the Korean
institute of surface engineering 49 (2016), 349-356.
[14] R. Jamaati, , M. R. Toroghinejad, A. Najafizadeh. Application of anodizing and CAR processes
for manufacturing Al/Al2O3 composite. Materials
Science and Engineering: A 527 (2010), 3857-3863.
[15] L.U.O Peng , H. h. ZHOU, C p. FU, Y.f.
KUANG. Preparation of anodic films on 2024 aluminum alloy in boric acid-containing mixed electrolyte.
Transactions of Nonferrous Metals Society of China
18 (2008), 825-830.
[16] H. Saffari, B. Sohrabi, M. R. Noori, H. R. Talesh
Bahrami. Optimal condition for fabricating superhydrophobic Aluminum surfaces with controlled
anodizing processes. Applied Surface Science 435
(2018),1322-1328.
[17] T.T.Kao, Y.Chung Chang. Influence of anodization parameters on the volume expansion of anodic
aluminum oxide formed in mixed solution of phosphoric and oxalic acids. Applied surface science 288
(2014), 654-659.
[18] G. Patermarakis. The origin of nucleation and
development of porous nanostructure of anodic alumina films. Journal of Electroanalytical Chemistry
635 (2009), 39-50.
[19] R. Beri, M. K. Kushwaha, N. Grover. A review
on studies of mechanical properties of anodized alumina oxide. Int. J. Res. Eng. Technol. 4(2017), 778-
782.
[20] S.Theohari, C. Kontogeorgou. Effect of temperature on the anodizing process of aluminum alloy AA
5052. Applied Surface Science 284 (2013), 611-618.
[21] R. O. Hussein, D. O. Northwood, X. Nie, The
influence of pulse timing and current mode on the
microstructure and corrosion behaviour of a plasma
electrolytic oxidation (PEO) coated AM60B magnesium alloy, Journal of Alloys and Compounds,
541(2012), 41-48.
[22] V. Moutarlier, M. P. Gigandet, B. Normand, J.
Pagetti, Electrochemical characterisation of anodic
oxidation films formed in presence of corrosion inhibitors, Applied Surface Science, 183(2001), 1-9.
[23] L. Bouchama, N. Azzouz, N. Boukmouche, J.
P. Chopart, A. L. Daltin, and Y. Bouznit. Enhancing
aluminum corrosion resistance by two-step anodizing process. Surface and Coatings Technology 235
(2013), 676-684.
[24] J.Zhang, J. Wang, B. Zhang, Y. Zeng, J. Duan,
and B. Hou. “Fabrication of anodized superhydrophobic 5083 aluminum alloy surface for marine anticorrosion and anti-biofouling.” Journal of Oceanology and Limnology 4 (2020),1246-1255.
[25] Y.Yang, W. Zhou, Z. Tong, L. Chen, X. Yang, E.
Asuako Larson, and X. Ren. “Electrochemical Corrosion Behavior of 5083 Aluminum Alloy Subjected
to Laser Shock Peening.” Journal of materials engineering and performance 10 (2019), 6081-6091.
[26] L. Bouchama, N. Azzouz, N. Boukmouche, J. P.
Chopart, A. Lise Daltin, and Y. Bouznit. “Enhancing
aluminum corrosion resistance by two-step anodizing process.” Surface and Coatings Technology 235
(2013), 676-684.
[27] Y.Huang, H. Shih, J. Daugherty and F. Mansfeld. “Evaluation of the properties of anodized aluminum 6061 subjected to thermal cycling treatment using electrochemical impedance spectroscopy (EIS).”
Corrosion Science 10 (2009),2493-2501.
[ ]28ر.علیرمضانی، ک. رئیسی ، ا. حکینیزاده، م. سانتاماریا، بررسی
نقش افزودنی پرمنگنات پتاسیم بر ریزساختار و رفتار خوردگی پوش
شهای اکسیداسیون الکترولیتی پلاسمایی پالسی بر آلیاژ 7075آلومینیوم،
نشریهی علوم .مهندسی خوردگی، (.2251-6217 ،13)139