Investigation of wear, hardness, microstructure properties and corrosion resistance of coated st52 steel by WC-Ni particles produced by tungsten -gas arc welding process

Document Type : Research Article

Authors

1 Advanced Material Research Center, Department of material engineering, Islamic Azad University of Najafabad, Najafabad, Iran

2 Department of Material Engineering, Shiraz University of Technology, Advanced Material Research Center, Department of material engineering, Islamic Azad University of Najafabad, Najafabad, Iran

3 Department of Mechanical Engineering, New Technologies Research Center, Advanced Material Research Group, , Amirkabir University of Technology, Tehran, Iran

4 Department of Mechanical Engineering, New Technologies Research Center, Advanced Material Research Group, Amirkabir University of Technology, Tehran, Iran.

/2017.6.21.1

Abstract

In this study, surface alloying of steel ST52 was carried out by gas tungsten arc welding using shielding
gas and tungsten carbide powder. To evaluate the metallurgical structure, wear and corrosion resistance
properties of the coating, optical microscopy, scanning electron microscopy (SEM), hardness and potentiostat
test is used. Corrosion test of prepared samples evaluated by uniform corrosion tests. Microstructural
evaluation of corrosion surfaces was performed by scanning electron microscopy (SEM). The
results of worn surfaces by SEM showed in general, increasing the amount of reinforcing particles of
WC increased matrix resistance against deformation and ultimately improve the wear resistance of the
samples. Also, the most wear resistance of the sample is obtained with 20 percent of the WC. Corrosion
test results showed that the uniform corrosion potential of samples increased by increasing reinforcement
phase compared to steel potential. Also, with increasing percentages of tungsten carbide reinforcing
particles corrosion resistance of samples has increased.

Keywords


[1] Dillon C P, Corrosion resistance of stainless steels, CRC Press, New York, 1995, 25-44.
[2] Philip A, Schweitzer PE, Paint and Coatings: Applications and Corrosion Resistance, CRC Press, New York, 2005, 365-93.
[3] Allahyarzadeh M H, Aliofkhazraei M, Rezvanian A R, Torabinejad V, Sabour Rouhaghdam A R, Ni-W electrodeposited coatings: Characterization, properties and applications, Surface & Coatings Technology 307, 2016, 978–1010.
[4] Heidarshenas B, Hussain G, Development of TiC/ Cr23C6 Composite Coating on St304 Substrate through TIG Process, Preprints, 2017, doi: 10.20944/preprints201704.0079.v1.
[5] Deng D, Zhang L, Niu T, Liu H, Zhang H, Microstructures and Wear Performance of PTAW Deposited Ni-Based Coatings with Spherical Tungsten Carbide, Metals 5, 2015, 1984-1996.
 [6] Tosun G, Ni–WC coating on AISI 1010 steel using TIG: microstructure and microhardness, Arabian Journal for Science and Engineering 39, 2014, 2097-2106.
[7] Wang S W, Lin Y C, Tsai Y Y, The effects of various ceramic-metal onwear performance of clad layer, Journal of Materials Processing Technology 140, 2003, 682-687.
[8] Yilmaz S O, Wear behavior of gas tungsten arc deposited FeCr, FeCrC, and WC coatings on AISI 1018 steel, Surface & Coatings Technology 201, 2006, 1568-1575.
]9[ مهدی حاجی هاشمی، قاسم عظیمی و مرتضی شمعانیان، برسی خواص لایه های سطحی 52Fe33Cr4C11Wو 57.5Fe33Cr4C5.5Wپوشش دهی شده برروی فولاد ساده کربنی به روش GTAW، پنجمین همایش مشترک انجمن مهندسین متالورژی و جامعه علمی ریخته گری ایران، 1390، تهران، ایران.
[10] Chen J H, Chen P N, Lin C M, Chang C M, Chang Y Y, Wuat W, Characterization of multi-element alloy claddings manufactured by the tungsten inert gas process, Surface & Coatings Technology 203, 2009, 2983-2988.
[11] Lu S P, Kwon O Y, Kim T B, Kim K H, Microstructure and wear property of Fe–Mn–Cr–Mo–V alloy cladding by submerged arc welding, Journal of Materials Processing Technology 147, 2004, 191-196.
]12[ امیر ساعتیان و محمود حیدرزاده سهمی، برسی رفتار سایشی لایه کامپوزیتی حاوی ذرات تقویت‌کننده TiC ایجاد شده به روش TIG بر روی سطح فولادAISI 1045 ، دهمین سمینار ملی مهندسی سطح، 1388، اصفهان، ایران.
[13] Buytoza S, Ulutanb M, In situ synthesis of SiC reinforced MMC surface on AISI 304 stainless steel by TIG surface alloying, Surface and Coatings Technology 200, 2006, 3698–3704.
[14] Stansbury E E, Buchanan R A, Fundamentals of electrochemical corrosion, ASM International, Ohio, 2000, 183-228.
[15] Szklarska-Smialowska Z, Pitting and crevice corrosion, NACE International Houston, Texas, 2005.
[16] Szklarska-Smialowska Z, Review of literature on pitting corrosion published since 1960, Corrosion 27, 1971, 223-233.
 [17] Fontana M G, Corrosion Engineering, McGraw-Hill, Third edition, Singapore, 1986, 73-256.
[18] Scully J R, Gebert A, Payer J H, Corrosion and related mechanical properties of bulk metallic glasses, Journal of Materials Research 22, 2007, 302-313.
[19] Saleh R, Ismall A, El-Hosary A, Corrosion Inhibition by Naturally Occurring Substances: VII. The effect of aqueous extracts of some leaves and fruit-peels on the corrosion of steel, Al, Zn and Cu in acids, British Corrosion Journal 17, 1982, 131-135.