Fabrication of Polymeric Micro-Platelets via Electro-Centrifuge Spinning

Document Type : Research Article

Authors

Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran

/2017.6.21.4

Abstract

The polymer particles have been used in various fields of chemistry, biology and physics applications
and subsequently there is a need for coating of various substrates by these particles to achieve a thin film
in many applications. So far, several methods have been proposed for the production of micro-particles;
but these methods often suffered from limitations such as low enclosure efficiency or difficulty in separating
particles from the aqueous phase. In this study, attempts have been made to produce micro platelet
particles and create a thin film by electro-centrifuge spinning for the first time. Electro-centrifuge
spinning is the cost-effective method with high production rate. Therefore, the effect of parameters
such as concentration, voltage, centrifugal force has been investigated on the shape and size of the
micro-platelet particles of poly (ε-caprolactone). In this regard, concentrations of 3 and 5 wt% of poly
(ε-caprolactone) in dichloromethane were used. Solutions with different concentrations were subjected
to electro-centrifuge spinning system to fabricate micro platelets. In order to investigate the effect of
voltage and centrifugal force on the particle diameter, poly (ε-caprolactone) particles were produced at
voltages of 15, 18 and 21 kV and rotational speeds of 1740 and 3190 rpm. The results showed that by
increasing the concentration of polymer solution, under the constant voltage and rotational speed, the
diameter of the micro platelets decreases. Also, by keeping constant the concentration of the solution
and the rotational speed, increasing the voltage leads to a decrease in the diameter of the micro platelets.
In addition, under the constant the concentration and the voltage, the diameter of the micro platelets
increases with increasing rotational speed. Also, by decreasing the solution concentration, satellite droplets
increase, which leads to an increase in the uniformity of the diameter of the micro-plates.

Keywords

Main Subjects


[1]         M. Sarret, C. Müller, and A. Amell, “Electroless NiP micro- and nano-composite coatings,” Surf. Coatings Technol., vol. 201, no. 1–2, pp. 389–395, 2006.
 
[2]         A. E. Deng, Y., L. Wang, W. Yang, S. Fu, “Preparation of magnetic polymeric particles via inverse microemulsion polymerization process,” J. Magn. Magn. Mater., pp. 69–78, 2003.
 
[3]         C. L. Stayton, Patrick S. Allan S. Hoffman, Mohamed El-Sayed, Samarth Kulkarni, Tsuyoshi Shimoboji, Niren Murthy, Volga Bulmus, “Intelligent biohybrid materials for therapeutic and imaging agent delivery.,” Proc. IEEE, pp. 726–736, 2005.
 
[4]         H.-J. A. Pich, Andrij, Jessica Hain, Yuri Prots, “Composite polymeric particles with ZnS shells,” Polymer (Guildf)., pp. 7931–7944, 2005.
 
[5]         B. Kuriokase, S. Padma, and S. P. Priya, “A Review on Microcapsules,” vol. 9, no. 1, pp. 28–39, 2015.
 
[6]         Y. Wu, S. J. Kennedy, and R. L. Clark, “Polymeric Particle Formation Through Electrospraying at Low Atmospheric Pressure,” pp. 381–387, 2008.
 
[7]         I. D. Rosca, F. Watari, and M. Uo, “Microparticle formation and its mechanism in single and double emulsion solvent evaporation,” J. Control. Release, vol. 99, no. 2, pp. 271–280, 2004.
 
[8]         L. Mu and S. S. Feng, “Fabrication, characterization and in vitro release of paclitaxel (Taxol®) loaded poly (lactic-co-glycolic acid) microspheres prepared by spray drying technique with lipid/cholesterol emulsifiers,” J. Control. Release, vol. 76, no. 3, pp. 239–254, 2001.
 
[9]         C. Berkland, K. K. Kim, and D. W. Pack, “Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions,” J. Control. Release, vol. 73, no. 1, pp. 59–74, 2001.
 
[10]       C. Berkland, M. King, A. Cox, K. K. Kim, and D. W. Pack, “Precise control of PLG microsphere size provides enhanced control of drug release rate,” J. Control. release, vol. 82, no. 1, pp. 137–147, 2002.
 
[11]       G. Ma, M. Nagai, and S. Omi, “Preparation of uniform poly (lactide) microspheres by employing the Shirasu Porous Glass (SPG) emulsification technique,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 153, no. 1, pp. 383–394, 1999.
 
[12]       K. Okuyama and I. W. Lenggoro, “Preparation of nanoparticles via spray route,” Chem. Eng. Sci., vol. 58, no. 3, pp. 537–547, 2003.
 
[13]       C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, “Processing and microstructural characterization of porous biocompatible protein polymer thin films,” Polymer (Guildf)., vol. 40, no. 26, pp. 7397–7407, 1999.
 
[14]       C. Berkland, D. W. Pack, and K. K. Kim, “Controlling surface nano-structure using flow-limited field-injection electrostatic spraying (FFESS) of poly (D, L-lactide-co-glycolide),” Biomaterials, vol. 25, no. 25, pp. 5649–5658, 2004.
 
[15]       I. G. Loscertales, A. Barrero, M. Márquez, R. Spretz, R. Velarde-Ortiz, and G. Larsen, “Electrically forced coaxial nanojets for one-step hollow nanofiber design,” J. Am. Chem. Soc., vol. 126, no. 17, pp. 5376–5377, 2004.
 
[16]       S. N. Jayasinghe, M. J. Edirisinghe, and D. Z. Wang, “Controlled deposition of nanoparticle clusters by electrohydrodynamic atomization,” Nanotechnology, vol. 15, no. 11, p. 1519, 2004.
 
[17]       I. G. Loscertales, A. Barrero, I. Guerrero, R. Cortijo, M. Marquez, and A. M. Ganan-Calvo, “Micro/nano encapsulation via electrified coaxial liquid jets,” Science (80-. )., vol. 295, no. 5560, pp. 1695–1698, 2002.
 
[18]       J. C. Ijsebaert, K. B. Geerse, J. C. M. Marijnissen, J.-W. J. Lammers, and P. Zanen, “Electro-hydrodynamic atomization of drug solutions for inhalation purposes,” J. Appl. Physiol., vol. 91, no. 6, pp. 2735–2741, 2001.
 
[19]       R. P. A. Hartman, D. J. Brunner, D. M. A. Camelot, J. C. M. Marijnissen, and B. Scarlett, “Jet break-up in electrohydrodynamic atomization in the cone-jet mode,” J. Aerosol Sci., vol. 31, no. 1, pp. 65–95, 2000.
 
[20]       Y. Yamashita, F. Ko, A. TANAKA, and H. MIYAKE, “Characteristics of elastomeric nanofiber membranes produced by electrospinning,” J. Text. Eng., vol. 53, no. 4, pp. 137–142, 2007.
 
[21]       S. Paruchuri and M. P. Brenner, “Splitting of a liquid jet,” Phys. Rev. Lett., vol. 98, no. 13, p. 134502, 2007.
 
[22]       G. Kim, Y.-S. Cho, and W. D. Kim, “Stability analysis for multi-jets electrospinning process modified with a cylindrical electrode,” Eur. Polym. J., vol. 42, no. 9, pp. 2031–2038, 2006.
 
[23]       Y. Srivastava, M. Marquez, and T. Thorsen, “Multijet electrospinning of conducting nanofibers from microfluidic manifolds,” J. Appl. Polym. Sci., vol. 106, no. 5, pp. 3171–3178, 2007.
 
[24]       S. A. Theron, A. L. Yarin, E. Zussman, and E. Kroll, “Multiple jets in electrospinning: experiment and modeling,” Polymer (Guildf)., vol. 46, no. 9, pp. 2889–2899, 2005.
 
[25]       W. Tomaszewski and M. Szadkowski, “Investigation of electrospinning with the use of a multi-jet electrospinning head,” Fibres Text. East. Eur., vol. 13, no. 4, p. 22, 2005.
 
[26]       A. Vaseashta, “Controlled formation of multiple Taylor cones in electrospinning process,” Appl. Phys. Lett., vol. 90, no. 9, p. 93115, 2007.
 
[27]       A. Varesano, R. A. Carletto, and G. Mazzuchetti, “Experimental investigations on the multi-jet electrospinning process,” J. Mater. Process. Technol., vol. 209, no. 11, pp. 5178–5185, 2009.
 
[28]       A. Varesano, F. Rombaldoni, G. Mazzuchetti, C. Tonin, and R. Comotto, “Multi‐jet nozzle electrospinning on textile substrates: observations on process and nanofibre mat deposition,” Polym. Int., vol. 59, no. 12, pp. 1606–1615, 2010.
 
[29]       S. Xie and Y. Zeng, “Effects of electric field on multineedle electrospinning: experiment and simulation study,” Ind. Eng. Chem. Res., vol. 51, no. 14, pp. 5336–5345, 2012.
 
[30]       Y. Yamashita, F. Ko, H. Miyake, and A. Higashiyama, “Establishment of nanofiber preparation technique by electrospinning,” 繊維学会誌, vol. 64, no. 1, pp. 24–28, 2008.
 
[31]       A. L. Yarin and E. Zussman, “Upward needleless electrospinning of multiple nanofibers,” Polymer (Guildf)., vol. 45, no. 9, pp. 2977–2980, 2004.
 
[32]       X. Gan, Y. Wu, L. Liu, B. Shen, and W. Hu, “Electroless plating of Cu-Ni-P alloy on PET fabrics and effect of plating parameters on the properties of conductive fabrics,” J. Alloys Compd., vol. 455, no. 1–2, pp. 308–313, 2008.
 
[33]       O. O. Dosunmu, G. G. Chase, W. Kataphinan, and D. H. Reneker, “Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface,” Nanotechnology, vol. 17, no. 4, p. 1123, 2006.
 
[34]       O. Jirsak, P. Sysel, F. Sanetrnik, J. Hruza, and J. Chaloupek, “Polyamic acid nanofibers produced by needleless electrospinning,” J. Nanomater., vol. 2010, p. 49, 2010.
 
[35]       X. Wang, H. Niu, X. Wang, and T. Lin, “Needleless electrospinning of uniform nanofibers using spiral coil spinnerets,” J. Nanomater., vol. 2012, p. 3, 2012.
 
[36]       F. Zhou, R. Gong, and I. Porat, “Polymeric nanofibers via flat spinneret electrospinning,” Polym. Eng. Sci., vol. 49, no. 12, pp. 2475–2481, 2009.
 
[37]       J. S. Varabhas, G. G. Chase, and D. H. Reneker, “Electrospun nanofibers from a porous hollow tube,” Polymer (Guildf)., vol. 49, no. 19, pp. 4226–4229, 2008.
 
[38]       A. Kumar, M. Wei, C. Barry, J. Chen, and J. Mead, “Controlling fiber repulsion in multijet electrospinning for higher throughput,” Macromol. Mater. Eng., vol. 295, no. 8, pp. 701–708, 2010.
 
[39]       F. Dabirian, S. A. Hosseini Ravandi, and A. R. Pishevar, “Investigation of Parameters Affecting PAN Nanofiber Production Using Electrical and Centrifugal Forces as a Novel Method ,” Curr. Nanosci., vol. 6, pp. 545-552, 2010.
 
[40]       A. Valipouri, S. A. H. Ravandi, and A. Pishevar, “A novel method for manufacturing nanofibers,” Fiber Polym., vol. 14, pp. 941-949, 2013.
 
[41]       S. Padron, A. Fuentes, D. Caruntu, and K. Lozano, “Experimental study of nanofiber production through forcespinning,” J. Appl. Phys., vol. 113, no. 2, p. 24318, 2013.
 
[42]       A. Bellofiore, “Experimental and numerical study of liquid jets injected in high-density air crossflow,” Università degli Studi di Napoli Federico II, 2007.
 
[43]       A. Valipouri, S. Abdolkarim, H. Ravandi, A. Pishevar, and E. I. Pa, “Experimental and numerical study on isolated and non-isolated jet behavior through centrifuge spinning system,” Int. J. Multiph. Flow, vol. 69, pp. 93–101, 2015.
[44]       X. Hao, L. Xiaofeng, L. Zhenyu, Z. Yiyang, S. Tiecun, Y. Qingbiao, Ce Wang, and L. Lijuan, "Effects of the electrospray ionization parameters on the formation and morphology of colloidal microspheres of polyacrylonitrile," Journal of applied polymer science, vol. 102, no. 3, pp. 2889-2893, 2006.
 
[45]         J. Gomez-Estaca, M. P. Balaguer, R. Gavara, and P. Hernandez-Munoz, "Formation of zein nanoparticles by electrohydrodynamic atomization: Effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin," Food Hydrocolloids, vol. 28, no. 1, pp. 82-91, 2012.
[46]         A. Mehregan Nikoo, R. Kadkhodaee, B. Ghorani, H. Razzaq, and N. Tucker. "Controlling the morphology and material characteristics of electrospray generated calcium alginate microhydrogels," Journal of microencapsulation, vol. 33, no. 7, pp. 605-612, 2016.
[47]         L. Partridge, D. C. Y. Wong, M. J. H. Simmons, E. I. Părău, and S. P. Decent, "Experimental and theoretical description of the break-up of curved liquid jets in the prilling process," Chemical Engineering Research and Design, vol. 83, no. 11, pp. 1267-1275, 2005.