Molecular dynamics simulation of the effect of size, crystallite shape, and defect on oxygen diffusion in SrTiO3

Document Type : Research Article

Authors

Department of Physics, Faculty of Science, Arak University, Arak, Iran

/amnc.2018.7.26.3

Abstract

In this work, the influence of oxygen vacancy defects, crystallite shape and size on oxygen diffusion in SrTiO3 nanocubes and nanowires has been studied by molecular dynamics simulation method. The SrTiO3 nanocubes with different sizes and nanowires with different lengths and axial direction of [001], were considered for this purpose. The oxygen vacancies ranging from 0 to 5% were created by random deletion of oxygen atoms from perfect SrTiO3 structure. All of the simulations have been performed at 1000K and atmospheric pressure by using Buckingham + columbic potential. The diffusion process of oxygen atoms was investigated by analyzing the mean square displacement curves. The achieved oxygen diffusion coefficients have a good agreement with experimental reports. In addition the results show that diffusion constant of oxygen atoms in individual nanocubes are increased by decreasing the size of nanocubes. The results also show that in individual SrTiO3 nanowires, the oxygen diffusion process is increased by increasing the length of the nanowires.

Keywords

Main Subjects


[1] R.J.D. Tilley, Perovskites  Structure–Property Relationship, John Wiley & Sons, Ltd, (2016).
[2] C. Li, K.C.K. Soh, P. Wu, Formability of ABO3 perovskites, Journal of Alloys and Compounds, 372 (2004) 40-48.
[3] م. فیض پور, ت. عبادزاده, سرامیک پیزوالکتریک بدو ن سرب نایوبات پتاسیم- سدیم؛ دشواری های فرآیند ساخت و مزیت های نسبی ایران: مطالعۀ موردی ایران و اسلوونی, مواد پیشرفته و پوشش های نوین, 4 (2016) 1148-1158.
[4] G.H. Haertling, Ferroelectric ceramics: history and technology, Journal of the American Ceramic Society, 82 (1999) 797-818.
[5] S. Presto, A. Barbucci, M.P. Carpanese, F. Han, R. Costa, M. Viviani, Application of La-Doped SrTiO3 in Advanced Metal-Supported Solid Oxide Fuel Cells, Crystals, 8 (2018) 134.
[6] S.-L. Zhang, C.-X. Li, C.-J. Li, Chemical compatibility and properties of suspension plasma-sprayed SrTiO3-based anodes for intermediate-temperature solid oxide fuel cells, Journal of Power Sources, 264 (2014) 195-205.
[7] Q. Ma, B. Iwanschitz, E. Dashjav, A. Mai, F. Tietz, H.-P. Buchkremer, Electrochemical performance and stability of electrolyte-supported solid oxide fuel cells based on Y-substituted SrTiO3 ceramic anodes, Solid state ionics, 262 (2014) 465-468.
[8] K.B. Yoo, B.H. Park, G.M. Choi, Stability and performance of SOFC with SrTiO3-based anode in CH4 fuel, Solid State Ionics, 225 (2012) 104-107.
[9] Y. Hu, O. Tan, J. Pan, H. Huang, W. Cao, The effects of annealing temperature on the sensing properties of low temperature nano-sized SrTiO3 oxygen gas sensor, Sensors and Actuators B: Chemical, 108 (2005) 244-249.
[10] N.Y. Chan, M. Zhao, J. Huang, K. Au, M.H. Wong, H.M. Yao, W. Lu, Y. Chen, C.W. Ong, H.L.W. Chan, Highly sensitive gas sensor by the LaAlO3/SrTiO3 heterostructure with Pd nanoparticle surface modulation, Advanced materials, 26 (2014) 5962-5968.
[11] K. Yu, C. Zhang, Y. Chang, Y. Feng, Z. Yang, T. Yang, L.-L. Lou, S. Liu, Novel three-dimensionally ordered macroporous SrTiO3 photocatalysts with remarkably enhanced hydrogen production performance, Applied Catalysis B: Environmental, 200 (2017) 514-520.
[12] G. Zhang, W. Jiang, S. Hua, H. Zhao, L. Zhang, Z. Sun, Constructing bulk defective perovskite SrTiO 3 nanocubes for high performance photocatalysts, Nanoscale, 8 (2016) 16963-16968.
[13]  J. Cao, X. Huang, Y. Liu, J. Wu, Y. Ji, Enhanced photocatalytic activity of SrTiO3 photocatalyst by topotactic preparation, Materials Research Express, 3 (2016) 115903.
[14] P. Zhang, T. Ochi, M. Fujitsuka, Y. Kobori, T. Majima, T. Tachikawa, Topotactic epitaxy of SrTiO3 mesocrystal superstructures with anisotropic construction for efficient overall water splitting, Angewandte Chemie International Edition, 56 (2017) 5299-5303.
[15] C. Wang, H. Qiu, T. Inoue, Q. Yao, Band gap engineering of SrTiO3 for water splitting under visible light irradiation, International Journal of Hydrogen Energy, 39 (2014) 12507-12514.
[16]  K.K. Adepalli, J. Yang, J. Maier, H.L. Tuller, B. Yildiz, Tunable Oxygen Diffusion and Electronic Conduction in SrTiO3 by Dislocation‐Induced Space Charge Fields, Advanced Functional Materials, 27 (2017) 1700243.
[17] H. Tan, Z. Zhao, W.-b. Zhu, E.N. Coker, B. Li, M. Zheng, W. Yu, H. Fan, Z. Sun, Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO3, ACS applied materials & interfaces, 6 (2014) 19184-19190.
[18] S. Menzel, M. Waters, A. Marchewka, U. Böttger, R. Dittmann, R. Waser, Origin of the ultra‐nonlinear switching kinetics in oxide‐based resistive switches, Advanced Functional Materials, 21 (2011) 4487-4492.
[19] ر. سلیمی, ع.ا. صباغ الوانی, ن. ناصری, ساخت نانوساختارهای پلاسمونیک نقره و مطالعه دینامیک مولکولی اثر غلظت پلی‌وینیل‌پیرولیدن بر خواص فوتوفیزیکی و ریزساختار آنها, مواد پیشرفته و پوشش های نوین, 6 (2018) 1645-1650.
[20] D. Frenkel, B. Smit, Understanding Molecular Simulation, Academic Press, Inc,( 2001).
[21] R.A. De Souza, V. Metlenko, D. Park, T.E. Weirich, Behavior of oxygen vacancies in single-crystal SrTiO 3: Equilibrium distribution and diffusion kinetics, Physical Review B, 85 (2012) 174109.
[22] R. De Souza, Oxygen diffusion in SrTiO3 and related perovskite oxides, Advanced Functional Materials, 25 (2015) 6326-6342.
[23] V. Metlenko, A.H. Ramadan, F. Gunkel, H. Du, H. Schraknepper, S. Hoffmann-Eifert, R. Dittmann, R. Waser, R.A. De Souza, Do dislocations act as atomic autobahns for oxygen in the perovskite oxide SrTiO3, Nanoscale, 6 (2014) 12864-12876.
[24] R.A. De Souza, C. Voisin, H. Schraknepper, M. Teusner, M. Kessel, P. Dufour, C. Tenailleau, S. Guillemet-Fritsch, Complex diffusion behavior of oxygen in nanocrystalline BaTiO 3 ceramics, Physical Chemistry Chemical Physics, 16 (2014) 2568-2575.
[25]  M. Schie, A. Marchewka, T. Müller, R.A. De Souza, R. Waser, Molecular dynamics simulations of oxygen vacancy diffusion in SrTiO3, Journal of Physics: Condensed Matter, 24 (2012) 485002.
[26] S.P. Waldow, R.A. De Souza, Computational study of oxygen diffusion along a [100] dislocations in the perovskite oxide SrTiO3, ACS applied materials & interfaces, 8 (2016) 12246-12256.
[27] B. Thomas, N. Marks, B. Begg, Developing pair potentials for simulating radiation damage in complex oxides, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 228 (2005) 288-292.
[28] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, Journal of computational physics, 117 (1995) 1-19.
[29] M.J. Akhtar, Z.U.N. Akhtar, R.A. Jackson, C.R.A. Catlow, Computer simulation studies of strontium titanate, Journal of the American Ceramic Society, 78 (1995) 421-428.
[30] Y.A. Abramov, V.G. Tsirelson, Acta Cryst. B 51 (1995) 942-951.
[31] K.L. Ngai, Relaxation and Diffusion in Complex Systems, Springer, (2011)
[32] Geraldine Baca Triveno, Multifunctionality of SrTiO3 nanocubes, PhD thesis, UNSW Faculty of Science, School of Materials Science and Engineering, Australia 2017.
[33] R. A. McKee, A generalization of the Nernest-Einstein equation for self-diffusion in high defect concentration solids, Solid State lonics, 5 (1981) 133 136
[34] Y. Zhang, X. Wang, W. Feng, Y. Zhen, P. Zhao, Z. Cai, L. Li, Effects of the shapes of BaTiO 3 nanofillers on PEO-based electrolytes for all-solid-state lithium-ion batteries, Ionics, (2018) 1-10.