Preparation and Characterization of Thermally Stable Nanofiber Based on Polyamide 66/ Poly (amide-imide) Blend

Document Type : Research Article

Authors

1 Department of Textile and Leather, Standard Research Institute, Karaj, Iran

2 Department of Packaging, Faculty of Chemistry and Petrochemical Engineering, Standard Research Institute (SRI), Karaj

/amnc.2018.7.26.6

Abstract

Using aliphatic polyamides in electrospinning is very interesting due to their unique properties such as processability. But these polymers have some disadvantages of low dimensional stability and poor thermal stability that limited their use. To solve this problem, various methods such as polymer blending have been suggested. In this research, for the first time, a newly synthesized poly (amide-imide) (PAI) polymer was added to polyamide 66 (PA66) and nanofibers fabricated from PA66/PAI blend with different amounts of PAI polymer. Morphology, dynamical-mechanical properties and thermal stability of nanofibers were analyzed by SEM, DMTA, and TGA, respectively. SEM images revealed that the PA66/PAI nanofibers with uniform structure and without beads were prepared even for nanofibers containing 50% PAI. Moreover, with increasing PAI polymer content in PA66/PAI solution, the average nanofiber diameter increased from 319±66 nm for neat PA66 to 522±65 nm for nanofibers containing 50% PAI polymer. DMA results showed that the storage modulus of PA66/PAI nanofibers in both glassy and rubbery regions were higher than that of neat PA66 nanofibers. At 60 °C, the storage modulus values for neat PA66 nanofibers and PA66/PAI containing 50% PAI were 16.85 MPa and 70 MPa, respectively, showing about four times increase. Furthermore, by incorporating PAI polymer into PA66 matrix, glass transition temperature was moved to higher temperatures. TGA data indicated that with increasing the content of PAI polymer, thermal stability of PA66/PAI nanofibers improved significantly; 65 °C increase in Tmax was obtained for nanofibers containing 50% PAI as compared to neat PA66 nanofibers.

Keywords

Main Subjects


[1] I. Alghoraibi. Fabrication and characterization of polyamide-66 nanofibers via electrospinning technique: Effect of concentration and viscosity, Int. J. Chemtech Res., 7(2014), 974-4290.
[2] L. M. Guerrini, M. C. Branciforti, T. Cava, R. E. S. Bretas. Electrospinning and characterization of polyamide 66 nanofibers with different molecular weights, Mater. Res., 12(2009), 181–190.
[3] S. Wu, B. Wang, G. Zheng, S. Liu, K. Dai, C. Liu, C. Shen. Preparation and characterization of macroscopically electrospun polyamide 66 nanofiber bundles, Mater. Lett., 124(2014),77–80.
[4] Y. Huang, A. Baji, H. Tien, Y. Yang, S. Yang, C. M. Ma, H. Liu, Y. Mai, N. Wang. Self-assembly of graphene onto electrospun polyamide 66 nanofibers as transparent conductive thin films, Nanotechnology,  22(2011), 475603-475610.
[5] Z. Li and C. Wang. Effects of working parameters on electrospinning, in One-Dimensional Nanostructures: Electrospinning Technique and Unique Nanofibers, Springer, Berlin. 2013, 15-29.
[6] L.M. Guerrini, M.C. Branciforti, T. Cava, R.E. Bretas. Electrospinning and characterization of polyamide 66 nanofibers with different molecular weights, Mater. Res., 12(2009), 181-190.
[7] A. Abbasi, M.M. Nasef, M. Takeshi, R. Faridi-Majidi. Electrospinning of nylon-6, 6 solutions into nanofibers: rheology and morphology relationships, Chinese J. Polym. Sci., 1(2014), 793-804.
[8] B.K. Gu, M.K. Shin, K.W. Sohn, S.I. Kim, S.J. Kim, S.K. Kim, H. Lee, J.S. Park. Direct fabrication of twisted nanofibers by electrospinning, Appl. Phys. Lett., 90(2007), 263902.
[9] N.S  Halim, M.D. Wirzal, M.R. Bilad, A.R. Yusoff, N.A. Nordin, Z.A. Putra, J. Jaafar. Effect of solvent vapor treatment on electrospun nylon 6,6 nanofiber membrane. IOP Conf. Ser. Mater. Sci. Eng., 429(2018), 012019.
[10] G. Amini, S. Samiee, A.A. Gharehaghaji, F. Hajiani. Fabrication of polyurethane and nylon 66 hybrid electrospun nanofiber layer for waterproof clothing applications. Adv. Polym. Tech., 35(2016), 419-427.
[11]  J. Matulevicius, L. Kliucininkas, D. Martuzevicius, E. Krugly, M. Tichovas, J. Baltrusaitis. Design and characterization of electrospun polyamide nanofiber media for air filtration applications, J. Nanomater., 1(2014), 14-28.
[12] Y. Wan, J. He., J. Yu. Experimental verification of scaling law between current and applied voltage in electrospinning , Iran. Polym. J., 15(2006), 265-268.
[13] S. Ramakrishna, K. Fujihara, W-E. Teo, T-C. Lim, Z. Ma. An introduction to electrospinning and nanofibers , World scientific publishing, Hackensack, NJ. 2005, 20-80.
[14] Y. Chen, R. Huang, Q. Zhang, W. Sun, X. Liu. Synthesis and properties of highly soluble branched polyimide based on 2, 4, 6-triamipyrimidine, High Perform. Polym., 29(2017), 68-76.
[15] Y. Chen, D. Mu, D.Chen. Synthesis, structure and properties of TAP-PMDA hyperbranched polyimides with different terminated groups, J. Macromol. Sci. A, 1(2018), 1-8.
 [16] M. Shabanian, N. Basaki, H. A. Khonakdar, S. H. Jafari, K. Hedayati, and U. Wagenknecht. Novel nanocomposites consisting of a semi-crystalline polyamide and Mg-Al LDH: Morphology, thermal properties and flame retardancy, Appl. Clay Sci., 90(2014), 101–108.
 [17] W. Wang, X. Wang, B. Liu, R. Li, E. Wang, Y. Zhang. Environment-friendly synthesis of long chain semiaromatic polyamides with high heat resistance, J. Appl. Polym. Sci., 114(2009), 2036–2042.
[18] S. Zulfiqar, M. I. Sarwar. Synthesis and characterization of aromatic-aliphatic polyamide nanocomposite films incorporating a thermally stable orgaclay, Nanoscale Res. Lett., 5(2009), 391–399.
[19] M. Trigo-Lopez et al. Recent patents on aromatic polyamides, Recent Patents Mater. Sci., 2(2010), 190–208.
[20] S. Agrawal, A.K. Narula. Facile synthesis of new thermally stable and organosoluble polyamide-imides based on non-coplaner phosphorus and silicon containing amines, J. Chem. Sci., 1(2014), 1849-1859.
[21] M-S. Huang, M-C. Yang, S. Chou. Preparation and properties of thermoplastic polyamide-imide and polyurea-amide-imide/copper foil composites, Polym. Polym .Compos., 1(2005), 777-795.
[22] Z. Rafiee, M. Kolaee. Synthesis and characterization of chiral poly (amide-imide) composite thin films containing functionalized multiwalled carbon nanotubes, J. Thermoplast. Compos. Mater.,  11(2018),0892705717744829.
[23] S. Mallakpour, M. Dinari. Effect of organically modified Ni–Al layered double hydroxide loading on the thermal and morphological properties of l-methionine containing poly (amide-imide) nanocomposites,  RSC Adv., 5(2015), 28007-28013.
[24] P. Thiruvasagam, M. Vijayan. Synthesis of new diacid monomer and poly (amide-imide)s: study of structure–property relationship and applications, J. Polym. Res., 1(2012), 9845-9854.
[25] I. Sava, Compared properties of some poly (amide-imide)s obtained by direct polycondensation,  Bulletin of the Transilvania University of Brasov, Series I: Engineering Sciences, 1(2009), 51-60.
[26] S. Dal Kim, B. Lee, T. Byun, I. S. Chung, J. Park, I. Shin, N. Y. Ahn, M. Seo, Y. Lee, Y. Kim, W.Y. Kim. Poly (amide-imide) materials for transparent and flexible displays, Sci. adv.,1(2018), 577-585.
[27] Y. T. Chang, C. F. Shu. Synthesis of hyperbranched aromatic poly (amide− imide): Copolymerization of B ‘B2 monomer with A2 monomer, Macromolecules, 11(2003), 661-666.
 [28] L. Setiawan, R. Wang, K. Li, A. G. Fane. Fabrication of novel poly (amide–imide) forward osmosis hollow fiber membranes with a positively charged nanofiltration-like selective layer, J. Membrane Sci., 369(2011), 196-205.
[29] S. Agrawal, A. Kumar. Synthesis and characterization of phosphorus containing aromatic poly (amide-imide)s copolymers for high temperature applications, Polym. Bull., 70(2013), 3241–3260.
[30] N. Yamazaki, M. Matsumoto. Reactions of the N-Phosphonium salts of pyridines., J. Polym. Sci.,  13(1975), 1373–1380.
]31 [ گ. سلیم بیگی، ک. نصوری، ا. موسوی شوشتری، اثر غلظت محلول پلیمری بر روی ساختار نانو الیاف پلی(وینیل الکل)، فصلنامه علمی - پژوهشی مواد نوین، (1392) 4، 33-21.
[32] J. M. Deitzel, J. Kleinmeyer, D. Harris, N. C. B. Tan. The effect of processing variables on the morphology morphology of electrospun nanofibers and textiles, Polymer, 42)2001(, 261-272.
[33] J. J. Feng. Stretching of a straight electrically charged viscoelastic jet, J. Non-Newton. Fluid Mech., 116(2003), 55-70.
]34[ ا. ربیعی، ا. ا. لنگرودی، ه. جمشیدی، م. گیلانی، تهیه و شناسایی نانو کامپوزیت هیبریدی پلی‌اکریل آمید- نانو ذرات سیلیکا، نشریه علمی-پژوهشی علوم و تکنولوژی پلیمر، (1391) 25، 414-405.
 [35] N. Amiraliyan, M. Nouri, M. H. Kish. Effects of some electrospinning parameters on morphology of natural silk-based nanofibers, J. Appl. Polym. Sci., 113(2009), 226-234.
[36] A. Celebioglu, T. Uyar. Electrospun porous cellulose acetate fibers from volatile solvent mixture, Mater. Lett., 65 (2011), 2291-2294.
[37] S. H. Chen, Y. Chang, K. R. Lee, J. Y. Lai. A three-dimensional dual-layer nano/microfibrous structure of electrospun chitosan/poly(D,L-lactide) membrane for the improvement of cytocompatibility, J. Membrane Sci., 450(2014), 224-234.
[38] M. Dhanalakshmi, J. P. Jog. Preparation and characterization of electrospun fibers of nylon 11, Express Polym. Lett., 2(2008), 540-548.
[39] A. Koski, K. Yim, S. Shivkumar. Effect of molecular weight on fibrous PVA produced by electrospinning, Mater. Lett., 58(2004), 493-497.
[40] S. Koombhongse, W. Liu, D. H. Reneker. Flat polymer ribbons and other shapes by electrospinning, J. Polym. Sci.  B Polym. Phys., 39(2001), 2598-2606.
 [41] F. Mammeri, E. Le Bourhis, L. Rozes, C. Sanchez. Mechanical properties of hybrid organic–inorganic materials, J. Mater. Chem., 15(2005), 3787-3811.