Optimization of toughening of Polylactic Acid Nanocomposites/ Nanofibrillated Cellulose

Document Type : Research Article

Authors

1 Polymer eng and Color Tech Department, Amirkabir university of Technology

2 Chemistry, Amirkabir University

3 Polymer eng and Color Tech Department, Amirkabir University of technology

/amnc.2018.7.25.4

Abstract

Structure-property relation is of vital importance in developing advanced polymer nanocomposites as
well as enhancing their ultimate properties. In this research study, toughening of polylactic acid (PLA)
with nanofibrillated cellulose (NFC) was studied and comparison was made between thermal and
mechanical properties of systems containing pristine and modified NFC. NFC was modified through two
different methods; acetylation of hydroxyl groups and grafting of polyethylene glycol (PEG) onto cellulose
chains. Fourier transform infrared spectroscopy , X-ray diffraction , and differential scanning
calorimetry were employed to probe into the surface characteristics, thermal properties and
crystallinity of NFC/modified NFC, respectively; moreover, SEM imaging was utilized for surface
morphology of samples. Subsequently, PLA with modified and unmodified NFC was prepared to evaluate
the filler addition effect on toughness. Acetylated NFC has changed the PLA crystallinity degree and rate,
which affected the modulus of PLA, as signaled by the changed NFC surface. Particularly, mechanical and
toughening behavior of the prepared nanocomposites were analyzed based on tensile measurements
which showed an eight-fold rise in toughening along with 18% decrease in modulus of the samples
comprising 1 wt.% of acetylated NFC compared to the blank PLA. In the light of the obtained results, it can be inferred that brittle PLA can be toughened by the surface modified NFC. This research study can illuminate the way for future works on the modifications of nano-scale fillers/additives to achieve improved mechanical and thermal properties
of PLA.

Keywords

Main Subjects


 
[1] Y. H. M. M. P. D. Raquez∗, "Laboratory of Polymeric and Composite Materials, Center of Innovation and Research in Materi," Progress in Polymer Science, vol. 38, p. 1504– 1542, 2013.
[2] حاجی بیگی م؛ شعبانیان م، بهبود خواص عبور دهی بخار آب و اکسیژن فیلم های پلی لاکتیک اسید با استفاده از پلیمر شبکه ای تهیه شده از 2-آکریل آمیدو- متیل پروپان سولفونیک اسید،نشریه مواد پیشرفته و پوشش های نوین، 5، 18، 1395
[3] مرآتی ع؛ لطیفی م؛ زمانی ف؛ قنبری آلانق ح؛ نادی پور ف، افزایش آبدوستی لایه ی نانولیفی الکتروریسی شده پلی لاکتیک گلایکولیک اسید، نشریه مواد پیشرفته و پوشش های نوین، 5، 20، 1396
[4] زمانی ف ؛ امانی تهران م، تولید لایه نانولیفی زیست سازگار رسانا آمیزه پلیمرهای PLGA/PCL/PANI ، نشریه مواد پیشرفته و پوشش های نوین ، 6، 22، 1396
[5] T. S. S. K. T. I. Shuji Fujisawa, "Surface Engineering of Ultrafine Cellulose Nanofibrils toward," BiomacromoleculeS, vol. 14, p. 1541−1546, 2013.
[6] L. M. Cintil Jose Chirayil, "REVIEW OF RECENT RESEARCH IN NANO CELLULOSE PREPARATION FROM DIFFERENT LIGNOCELLULOSIC FIBERS," Mater. Sci, vol. 37, pp. 20-28, 2014.
[7] J. G. A.K. Bledzki, "Composites reinforced with cellulose based fibres," Prog. Polym, vol. 24, p. 221–274, 1998.
[8] J. B. Gilberto Siqueira, "Cellulosic Bionanocomposites: A Review of Preparation Properties and Applications," Polymers, vol. 37, pp. 728-765, 2010.
[9] X. W. ,. L. Yihong Wang, "Homogeneous Isolation of Nanocellulose from Cotton Cellulose by High Pressure Homogenization," Materials Science and Chemical Engineering, vol. 1, pp. 49-52 , 2013.
[10] M. N. B. Karim Missoum, "Nanofibrillated Cellulose Surface Modification: A Review," materials, vol. 6, pp. 1745-1766, 2013.
[11] A. Isogai, "Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials," Wood Sc, vol. 59, p. 449–459, 2013.
[12] Y. D. H.P.S. Abdul KhaliL, "Production and modification of nanofibrillated cellulose using various mechanical processes: A review," Carbohydrate Polymers, vol. 99, p. 649– 665, 2014.
[13] M. M. A. Mohammad Tajul Islam, " REVIEW on MODIFICATION of NANOCELLULOSE for APPLICATION in COMPOSITES," International Journal of Innovative Research in Science Engineering and Technology , vol. 2, no. 10, 2013.
[14] M. B. Alireza Ashori, "Solvent-free acetylation of cellulose nano fiber for improving campability and dispersion," Carbohydrate Polymers, vol. 6, p. 369– 375, 2014.
[15] A. P. M. ,. M. A. Mehdi Jonoobi, "A Comparison of Modified and Unmodified Cellulose Nanofiber Reinforced Polylactic Acid (PLA) Prepared by Twin Screw Extrusion," J Polym Environ, vol. 20, pp. 991-997, 2012.
[16] K. a. K. Mindaugas Bulota, "Acetylated Microfibrillated Cellulose as a Toughening Agent in Poly(lactic acid)," Applied Polymer Science, vol. E448–E457, p. 126, 2012.
[17] S. L. M. J. Tingju Lu, "Effects of modifications of bamboo cellulose fibers on the improved mechanical properties of cellulose reinforced poly(lactic acid) composites," Composites, vol. 62, pp. 191-197, 2014.
[18] A. P. Mercedes Peltzerm, "Surfacemodification of cellulose nanocrystals by grafting with poly(lactic acid)," Polym Int, vol. 63, p. 1056–1062, 2013.
[19] D. P. Istva ´n Siro, "Microfibrillated cellulose and new nanocomposite materials," Cellulose , vol. 17, pp. 459-494, 2010.
[20] W. Z. Jiwen Wang, "Poly(Ethylene Glycol) Grafted Starch Introducing a Novel Interphase in Poly(Lactic Acid)/Poly(Ethylene Glycol)/Starch Ternary Composites," J Polym Environ, vol. 20, p. 528–539, 2012.
[21] K. O. Daniel Bondeson, "Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol," Composites, vol. 38, p. 2486–2492, 2007.
[22] X. D. Z. Zhao Qian Li, "Preparation and Characterization of Bacterial Cellulose/Polylactide Nanocomposites," Polymer-Plastics Technology and Engineering, vol. 49, p. 141–146, 2010.
[23] L. J. a. B. R. Farrington D.W., Poly(lactic acid) Fibres, Biodegradable and Sustainable Fibres, England: CRC, 2005.
[24] H. B. A. a. I. Y. A. Abdul Khalil, " Green composites from sustainable cellulose nanofibrils: A review.," Carbohydrate Polymers, vol. 87, pp. 963-979, 2012.
[25] H. M. L. H. a. P. C. Saeidlou S., "Poly(lacticacid) Crystallization," J. Prog. Polym. Sci.,, vol. 12 , no. 37, pp. 1657-1677, 2012.
[26] M. L. Elham Eslahi Nowpashani, "Production of Polylactic Acid (PLA) from Biomass: A Review," بسپارش, vol. 3, pp. 66-75, 2013.
[27] J. L. a. Z. J, "Biodegradable Polymers and Polymer Blends," Journal of Handbook of Biopolymers and Biodegrad able Plastics, vol. 10, pp. 109-128, 2013.
[28] S. X. L. C. a. F. M. Wang N., Synthesis, Char acterization, Biodegradation, and Drug Delivery Application of Biodegradable Lactic/Glycolic Acid Polymers: I. Synthesis and Characterization,, J. Biomat. Sci., Ed., 11, p. 301.
[29] O. T. I. K. H. H. Harada M., "Increased Impact Strength of Biodegradable Poly(lactic acid)/Poly(butylenes succinate) Blend Composites by Using Isocyanate as a Reactive Processing Agen," J. Appl.Polym. Sci, vol. 106, pp. 1813-1820, 2007.
[30] N. K. J. a. W. R. H. Jung Wee Y., "Biotechnological Production of Lactic Acid and Its Recent Applications, Food Technology," Biotechnology, vol. 44, pp. 163-172, 2006.
[31] M. Shimao, "Biodegradation of plastics," Curr Opin Biotech, vol. 12, pp. 242-247, 2001.
[32] Y. N. Dae-Young Kim, "Surface acetylation of bacterial cellulose," Cellulose, p. 361–367, 2002.
[33] J. H. Ali Abdulkhani, "Preparation and characterization of modified cellulose nano bers reinforced polylactic acid nanocomposite," Polymer Testing, vol. 35, pp. 73-79, 2014.
[34] K. a. K. Mindaugas Bulota, "Acetylated Microfibrillated Cellulose as a Toughening Agent in Poly(lactic acid)," Applied Polymer Science, vol. 126, p. E448–E457, 2012.
[35] R. K. C. WeiDan Ding, "Non-isothermal crystallization behaviors of poly(lactic acid)/cellulose nanofiber composites in the presence of CO," uropean Polymer Journa, vol. 71, pp. 231-247, 2015.
[36] A. N. N. Lisman Suryanegara, "The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites," Composites Science and Technology, vol. 69, p. 1187–1192, 2009.
[37] W. L. Xiuju Zhang, "Studies on confined crystallization behavior of nanobiocomposites consisting of acetylated bacterial cellulose and poly (lactic acid)," Thermoplastic Composite Materials, vol. 26, p. 346–361, 2011.
[38] K. T. Yanan Song, "Crystallization behavior of poly(lactic acid)/microfibrillated cellulose composite," Polymer, vol. 54, p. 3417, 2013.
[39] Y. X. Yaming Wang, "Nucleation density reduction” effect of biodegradable cellulose acetate butyrate on the crystallization of poly(lactic acid)," Materials Letters, vol. 2014, p. 85–88, 128.
[40] Y. S. Jing-Hui Yang, "Synergistic Effect of Poly(ethylene glycol) and Graphene Oxides on the Crystallization Behavior of Poly(L-lactide)," APPL. POLYM, vol. 130, pp. 3498-3508, 2013.
[41] C. Q. Q. Z. Xiaoling Gao, "Brittle-Ductile Transition and Toughening Mechanism in POM/TPU/CaCO3 Ternary Composites," Macromol. Mater. Eng, vol. 289, pp. 41-48, 2004.
[42] F. L. L. J. Xuezhu Xu, "Cellulose Nanocrystals vs. Cellulose Nanofibrils: A Comparative Study on Their Microstructures and Effects as Polymer Reinforcing Agents," Appl. Mater, vol. 25, pp. 831-826, 2013.
[43] A. Galeski, "Strength and toughness of crystalline polymer systems," Prog. Polym. Sci, vol. 28, p. 1643–1699, 2003.
[44] S. B. J.-F. C. A.N. Frone, "Cellulose Fiber-Reinforced Polylactic Acid," POLYMER COMPOSITES, vol. 8, pp. 976-985, 2011.
[45] T. Z. Philippe Tingaut, "Synthesis and Characterization of Bionanocomposites with Tunable Properties from Poly(lactic acid) and Acetylated Microfibrillated Cellulose," Biomacromolecules, vol. 11, p. 454–464, 2010.
[46] S. B. L. Sung Wook Hwang, "Grafting of maleic anhydride on poly(L-lactic acid). Effects on physical and mechanical properties," Polymer Testing, vol. 31, p. 333–344, 2012.
[47] L. C. J. M. A. Segal, "An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer," Textile Research, vol. 29, pp. 786-794, 1959.
[48] U. a. G. N. Holzwarth, "The Scherrer equation versus the 'Debye-Scherrer equation," Nature Nanotechnology, vol. 9, pp. 534-534, 2011.
[49] W. Z. H. Z. C. P. J. Wang, "Continuous processing of low-density, microcellular poly(lactic acid) foams with controlled cell morphology and crystallinity," Chem. Eng. Sci, vol. 75, p. 390–399, 2012.
[50] N. T. P. Ö. Cetin, "Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions," Macromolecular Bioscience, vol. 9, pp. 997-1003, 2009.
[51] M. a. F. R. Adebajo, "Infrared and 13C MAS nuclear magnetic resonance spectroscopic study of acetylation of cotton. Spectrochimica Acta Part A," Molecular and Biomolecular Spectroscopy, vol. 60, pp. 449-453, 2004.
[52] R. B. Mohamed Abdel Salam, "Synthesis and characterization of multi-walled," Arabian Journal of Chemistry, vol. 12, pp. 3-6, 2012.