interaction of Tetryl on the Surface of nanostructure of fullerene C24

Document Type : Research Article

Authors

1 Young Researchers and Elite Club, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran

2 Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahre-rey Branch, Islamic Azad University, Tehran, Iran

/amnc.2019.7.28.2

Abstract

This paper investigates the interaction of tetryl on the surface of pure C24, Si-doped C24 and Ge-doped C24 by density functional theory. For this purpose, the structures of tetryl, pure and doped fullerenes and their complexes were optimized geometrically. Then, IR and frontier molecular orbital calculations were implemented on them. The obtained adsorption energies, Gibbs free energy variations, enthalpy changes, and thermodynamic equilibrium constants showed that the interaction of tetryl with pure and doped fullerenes is exothermic, spontaneous, irreversible and experimentally possible. The calculated specific heat capacity values proved the heat sensitivity has declined significantly after adsorption of tetryl on the surface of nanostructure. The N-O and C-O bond lengths and density of tetryl complexes with C24 exhibited the detonation pressure, explosion velocity and energetic features of tetryl have enhanced considerably after its coating on the fullerene. Molecular orbital parameters such as band gap, chemical potential, electrophilicity, chemical hardness, and maximum transferred charge capacity have also been evaluated and the results indicated that the electric conductivity of C24 has decreased after absorbing of tetryl on the surface of nano-adsorbent. Therefore, fullerene can be used as an electroactive sensing material in the construction of novel electrochemical sensors for the detection of tetryl.

Keywords

Main Subjects


[1] H. H. Cady, The Crystal Structure of N-Methyl-N,2,4,6-tetranitroaniline (Tetryl). Acta. Cryst. 23(1967), 601-609.
[2] P. C. Hariharan, W. S. Koski, J. J. Kaufman, Ab Initio MODPOT/VRDDO/MERGE Calculationson Energetic Compounds. 111. Nitroexplosives: Polyaminopolynitrobenzenes (Including DATB, TATB, and Tetryl). Int. J. Quantum. Chem. 23 (1983), 1493-1504.
[3] S. D. Harvey, R. J. Fellows, J. A. Campbell, D. A. Cataldo, Determination of the explosive 2,4,6trinitrophenylmethylnitramine (tetryl) and its transformation products in soil. J. Chromatogr. 605(1992), 227-240.
[4] I. E. Lindstorm, Planar Shock Initiation of Porous Tetryl. J. Appl. Phys. 41(1970), 337-350.
[5] A. Mustafa, A. A. Zahran, Tetryl, Pentyl, Hexyl, and Nonyl Preparation and Explosive Properties. J. Chem. Eng. Data. 8(1963) 135-150.
[6] S. R. Myers, J. A. Spinnato, Metabolism, tissue distribution, and pharmacokinetics of
N-methyl-N-2,4,6-tetranitroaniline (tetryl). Environ. Toxicol. Pharmacol. 24(2007), 206-211.
[7] D. Ngoc Khue, T. D. Lam, N. V. Chat, V. Q. Bach, D. B. Minh, V. D. Loi, N. V. Anh, Simultaneous degradation of 2,4,6-trinitrophenyl-N-methylnitramine (Tetryl) and hexahydro-1,3,5-trinitro-1,3,5 triazine (RDX) in polluted wastewater using some advanced oxidation processes. J. Ind. Eng. Chem. 20 (2014), 1468-1475.
[8] S. D. Harvey, R. J. Fellows, J. A. Campell, D. A. Cataldo, Determination of the explosive 2,4,6trinitrophenylmethylnitramine (tetryl) and its transformation products in soil. J. Chromatogr. 605(1992), 227-240.
[9] T. V. Reddy, G. R. Olson, B. Wiechman, G. Reddy, J. Torsella, F. B. Daniel, G. J. Leach, Toxicity of Tetryl (N-Methyl-N,2,4,6-Tetranitroaniline) in F344 Rats. Int. J. Toxicol. 18(1999), 97-107.
[10] M. E. Fuller, J. Kruczek, R. L. Schuster, P. L. Sheehan, P. M. Arienti, Bioslurry treatment for soils contaminated with very high concentrations of 2,4,6trinitrophenylmethylnitramine (tetryl). J. Hazard. Mater. 100(2003), 245- 257.
[11] J. Hilton, C. N. Swanston, Clinical manifestations of tetryl and trinitrotoluene. B. M. J. 2(1941), 509-510.
[12] S. J. Toal, W. C. Trogler, Polymer sensors for nitroaromatic explosives detection. J. Mater. Chem. 16(2006), 2781-2883.
[13] Stringer, R. C.; Gangopadhyay, S., Grant, S. A., Detection of Nitroaromatic Explosives Using a Fluorescent-Labeled Imprinted Polymer. Anal. Chem. 2010, 82 (3), 4015- 4019, DOI: 10.1021/ac902838c.
[14] J. D. Rodgers, N. J. Bunce, Treatment methods for the remediation of nitroaromatic explosives. Wat. Res. 35(2001), 2101-2111.
[15] Y. Pan, W. Zhu, H. Xiao, Theoretical studies of a series of azaoxaisowurtzitane cage compounds with high explosive performance and low sensitivity. Comput. Theor. Chem. 1114(2017), 77-86.
[16] G. Han, R. J. Gou, F. Ren, S. Zhang, C. Wu, S. Zhu, Theoretical investigation into the influence of molar ratio on binding energy, mechanical property and detonation performance of 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclo octane (HMX)/1-methyl-4,5-dinitroimidazole (MDNI) cocrystal explosive. Comput. Theor. Chem. 1109(2017), 27-35.
[17] P. Ma, Y. Pan, J. C. Jiang, S. G. Zhu, Molecular Dynamic Simulation and Density Functional Theory Insight into the Nitrogen Rich explosive 1,5-diaminotetrazole(DAT). Procedia. Eng. 211(2018), 546-554.
[18] M. D. Esrafili, N2O reduction over a fullerene-like boron nitride nanocage: A DFT study. Phys. Lett. 381(2017), 2085-2091.
[19] A. Vinu, T. Mori, K. Ariga, New families of mesoporous materials. Sci. Technol. Adv. Mater. 7(2006), 753-771.
[20] M. T. Baei, M. Moghimi, A. shojaei, Benzene Adsorption on C24Fullerene. Biosci., Biotech. Res. Asia. 12(2015), 1363-1366.
[21] A. Hosseinian, E. Vessaly, S. yahyaei, L. Edjlali, A. Bekhradnia, A Density Functional Theory Study on the Interaction Between 5-Fluorouracil Drug and C24 Fullerene. J. Clust. Sci. 28(2017), 2681-2692.
[22] L. Shemshaki, R. Ahmadi, The thermodynamic parameters derived material [1,5-b] tetrazolo [1,2,4] Terry inflorescences (TTA) with boron nitride nano- cages in different conditions of temperature, density functional theory method. Int. J. New. Chem. 2(2015), 247-254.
[23] R. Ahmadi, N. Madahzadeh Darini, Study of 5-Picrylamino-1,2,3,4-tetrazole(PAT) with nanostructures of fullerene and boron nitride nano-cages in different conditions of temperature, using density functional theory. Int. J. Bio-Inorg. Hybr. Nanomater. 5(2016), 273-278.
[24] R. Ahmadi, L. Shemshaki, The thermodynamic parameters of the formation of derivatives of 1-(4-nitrophenyl)-1H-Tetrazole (NPHT) with Boron Nitride nano-cage structure in different temperature conditions, the DFT method. Int. J. Bio-Inorg. Hybr. Nanomater. 5(2016), 141-146.
[25] R. Ahmadi, M. R. Jalali Sarvestani, Investigating the Effect of Doping Graphene with Silicon in the Adsorption of Alanine by Density Functional Theory. Phys. Chem. Res. 6(2018), 639-655.
[26] M. R. Jalali Sarvestani, R. Ahmadi, Evaluating the Performance of 2,3-dihydro-1H-phenothiazine4(5aH)-one as an Ionophore in Construction of a Cation Selective Electrode by Density Functional Theory. Int. J. New. Chem. 5(2018) 409-418.
[27] M. R. Jalali Sarvestani, R. Ahmadi, Investigating the Complexation of a recently synthesized phenothiazine with Different Metals by Density Functional Theory. Int. J. New. Chem. 4(2017), 400-408.
[28] R. Ahmadi, M. R. Jalali Sarvestani, Computational investigation of the influence of carbon nanostructures on the properties of energetic TATB substance by DFT method. Int. J. Bio-Inorg. Hybrid. Nanomater. 6(2017), 239-244.
[29] R. Ahmadi, Study of thermodynamic parameters of (TATB) and its fullerene derivatives with different number of Carbon (C20, C24, C60), in different conditions of temperature, using density functional theory. Int. J. Nano. Dimens. 8(2017) 250-256.
[30] M. Culebras, A. M. Lopez, C. M. Gomez, A. Cantarero, Thermal sensor based on a polymer nanofilm. Sens. Actuators. A. Phys. 239(2016) 161-165.
[31] M. R. Jalali Sarvestani, L. Hajiaghbabaei, J. Najafpour, S. Suzangarzadeh, 1-(6-choloroquinoxaline-2-yl) Hydrazine as an Excellent Ionophore for Ppreparation of a Cobalt Selective Electrode and Potentiometric Measuring of Vitamin B-12 in Pharmaceutical Samples. Anal. Bioanal. Electrochem. 10(2018), 675-698.
[32] P. Ravi, M. G. Gore, S. P., Tewari, A. K., Sikder, DFT study on the structure and explosive properties of nitropyrazoles. Mol. Simul. 38(2013), 218-226.
[33] R. Ahmadi, M. R. Jalali Sarvestani, Adsorption of proline amino acid on the surface of fullerene (C20) and boron nitride cage (B12N12): A comprehensive DFT study. Iran. Chem. Commun. 7 (2019), 344-351.
[34] M. R. Jalali Sarvestani, R. Ahmadi, Investigating the Influence of Doping Graphene with Silicon and Germanium on the Adsorption of Silver (I). J. Water. Environ. Nanotechnol. 4 (2019), 48-59.
[35] E. S. Mirkamali, R. Ahmadi, K. Kalateh, G. Zarei, Adsorption of melphalan anticancer drug on the surface of fullerene (C24): a comprehensive DFT study. Nanomed. J. 6 (2019), 112-119.
[36] B. Farhang Rik, R. Ahmadi, M. Karegar Razi, Evaluation of C60 nano-structure performance as nano-carriers of procarbazine anti-cancer drug using density functional theory methods. Iran. Chem. Commun. 7 (2019), 405-414.
[37] M. Godarzi, R. Ahmadi, R. Ghiasi, M. Yousefi, Effect of B12N12 junction on the energetic and chemical features of PATO: A density functional theory investigation. Int. J. Nano. Dimens. 10 (2019), 62-68.
[38] R. Ahmadi, M. R. Jalali Sarvestani, B. Sadeghi, Computational study of the fullerene effects on the properties of 16 different drugs: A review. Int. J. Nano. Dimens. 9 (2018), 325-335.