Crystallization behavior of polypropylene/graphene nanoplatelets nanocomposite fiber I. Isothermal crystallization kinetics

Document Type : Research Article

Authors

1 Department of Textile and Leather, Standard Research Institute, Karaj, Iran

2 Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran

/amnc.2019.7.28.6

Abstract

Crystallization behavior of polypropylene/graphene nanoplatelets (PP/GnPs) nanocomposite fiber was studied by means of differential scanning calorimetry. PP/GnPs nanocomposite fibers containing different amounts of GnPs were prepared with and without a compatibilizer, maleic anhydride-grafted polypropylene (PP-g-MA), and then isothermal crystallization kinetics was investigated at different crystallization temperatures by Avrami and Lauritzen-Hoffman equations. The results show that heterogeneous nucleation occurs easily in the presence of GnPs even at higher temperatures and thereby the crystallization rate of PP in the PP/GnPs fiber increased. Moreover, upon inclusion of PP-g-MA, relative crystallinity-time curves shifted to the shorter times. The Avrami equation revealed that although GnPs and PP-g-MA have nucleation effect, the crystal growth of PP is restricted in the PP/PP-g-MA/GnPs nanocomposite fiber, increasing the crystallization half-time. Furthermore, Avrami exponent of approximately 3 for neat PP and 2 for PP/GnPs is consistent with three-dimensional crystal growth process and two-dimensional crystal growth, respectively. According to Lauritzen-Hoffman equation, the nucleation parameter decreased with the addition of GnPs, suggesting that the GnPs act as a nucleating agent and also reduced the interfacial free energy.

Keywords

Main Subjects


[1] H. Kim, A.A. Abdala, C.W. Macosko. Graphene/Polymer Nanocomposites, Macromolecules, 43 (2010), 6515-6530.
[2] V.B. Mohan, K.-t. Lau, D. Hui, D. Bhattacharyya. Graphene-based materials and their composites: A review on production, applications and product limitations, Compos. Part B- Eng., 142 (2018), 200-220.
[3] V.B. Mohan, D. Liu, K. Jayaraman, M. Stamm, D. Bhattacharyya. Improvements in electronic structure and properties of graphene derivatives, Adv. Mater. Lett., 7 (2016), 421-429.
[4] M.D. Via, J.A. King, J.M. Keith, I. Miskioglu, M.J. Cieslinski, J.J. Anderson, G.R. Bogucki. Tensile modulus modeling of carbon black/polycarbonate, carbon nanotube/polycarbonate, and exfoliated graphite nanoplatelet/polycarbonate composites, J. Appl. Polym. Sci., 124 (2012), 2269-2277.
[5] B. Mayoral, E. Harkin-Jones, P.N. Khanam, M. AlMaadeed, M. Ouederni, A. Hamilton, D. Sun. Melt processing and characterisation of polyamide 6/graphene nanoplatelet composites, RSC Adv., 5 (2015), 52395-52409.
[6] B. Ahmadi-Moghadam, F. Taheri. Effect of processing parameters on the structure and multi-functional performance of epoxy/GNP-nanocomposites, J. Mater. Sci., 49 (2014), 6180-6190.
[7] J. Liang, J. Wang, G.C. Tsui, C. Tang. Thermal properties and thermal stability of polypropylene composites filled with graphene nanoplatelets, J. Thermoplast. Compos., 31 (2018), 246-264.
[8] K. Kalaitzidou, H. Fukushima, L.T. Drzal. Mechanical properties and morphological characterization of exfoliated graphite–polypropylene nanocomposites, Compos. Part A Appl. Sci. Manuf., 38 (2007), 1675-1682.
[9] Y.S. Jun, J.G. Um, G. Jiang, A. Yu. A study on the effects of graphene nano-platelets (GnPs) sheet sizes from a few to hundred microns on the thermal, mechanical, and electrical properties of polypropylene (PP)/GnPs composites, Express Polym. Lett., 12 (2018), 885-897.
[10] K. Kalaitzidou, H. Fukushima, H. Miyagawa, L.T. Drzal. Flexural and tensile moduli of polypropylene nanocomposites and comparison of experimental data to Halpin-Tsai and Tandon-Weng models, Polym. Eng. Sci., 47 (2007), 1796-1803.
[11] S. He, J. Zhang, X. Xiao, Y. Lai, A. Chen, Z. Zhang. Study on the morphology development and dispersion mechanism of polypropylene/graphene nanoplatelets composites for different shear field, Compos. Sci. Technol., 153 (2017), 209-221.
[12] K. Kalaitzidou, H. Fukushima, L.T. Drzal. Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets, Carbon, 45 (2007), 1446-1452.
[13] L. Altay, M. Atagur, K. Sever, I. Sen, T. Uysalman, Y. Seki, M. Sarikanat. Synergistic effects of graphene nanoplatelets in thermally conductive synthetic graphite filled polypropylene composite, Polym. Compos., 40 (2019), 277-287.
[14] S. He, J. Zhang, X. Xiao, X. Hong, Y. Lai. Investigation of the conductive network formation of polypropylene/graphene nanoplatelets composites for different platelet sizes, J. Mater. Sci., 52 (2017), 13103-13119.
[15] K. Kalaitzidou, H. Fukushima, L.T. Drzal. A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold, Compos. Sci. Technol., 67 (2007), 2045-2051.
[16] E.V. Kuvardina, L.A. Novokshonova, S.M. Lomakin, S.A. Timan, I.A. Tchmutin. Effect of the graphite nanoplatelet size on the mechanical, thermal, and electrical properties of polypropylene/exfoliated graphite nanocomposites, J. Appl. Polym. Sci., 128 (2013), 1417-1424.
[17] A.J. Duguay, A. Kiziltas, J.W. Nader, D.J. Gardner, H.J. Dagher. Impact properties and rheological behavior of exfoliated graphite nanoplatelet-filled impact modified polypropylene nanocomposites, J. Nanopart. Res., 16 (2014), 2307.
[18] A.J. Duguay, J.W. Nader, A. Kiziltas, D.J. Gardner, H.J. Dagher. Exfoliated graphite nanoplatelet-filled impact modified polypropylene nanocomposites: influence of particle diameter, filler loading, and coupling agent on the mechanical properties, Appl. Nanosci., 4 (2014), 279-291.
[19] B. Kalantari, M.R. Mohaddes Mojtahedi, F. Sharif, R. Semnani Rahbar. Flow-induced crystallization of polypropylene in the presence of graphene nanoplatelets and relevant mechanical properties in nanocompsoite fibres, Compos. Part A Appl. Sci. Manuf., 76 (2015), 203-214.
[20] B. Kalantari, M.R. Mohaddes Mojtahedi, F. Sharif, R. Semnani Rahbar. Effect of graphene nanoplatelets presence on the morphology, structure, and thermal properties of polypropylene in fiber melt-spinning process, Polym. Compos., 36 (2015), 367-375.
[21] E. Nilsson, H. Oxfall, W. Wandelt, R. Rychwalski, B. Hagström. Melt spinning of conductive textile fibers with hybridized graphite nanoplatelets and carbon black filler, J. Appl. Polym. Sci., 130 (2013), 2579-2587.
[22] C. Dal Castel, T. Pelegrini, R.V. Barbosa, S.A. Liberman, R.S. Mauler. Properties of silane grafted polypropylene/montmorillonite nanocomposites, Compos. Part A Appl. Sci. Manuf., 41 (2010), 185-191.
[23] K.S. Santos, C.D. Castel, S.A. Liberman, M.A.S. Oviedo, R.S. Mauler. Polyolefin-based nanocomposite: The effects of processing aids, J. Appl. Polym. Sci., 119 (2011), 1567-1575.
[24] C.I. Ferreira, C. Dal Castel, M.A.S. Oviedo, R.S. Mauler. Isothermal and non-isothermal crystallization kinetics of polypropylene/exfoliated graphite nanocomposites, Thermochim. Acta, 55 (2013), 40-48.
[25] K. Kalaitzidou, H. Fukushima, P. Askeland, L.T. Drzal. The nucleating effect of exfoliated graphite nanoplatelets and their influence on the crystal structure and electrical conductivity of polypropylene nanocomposites, J. Mater. Sci., 43 (2008), 2895-2907.
[26] J.-Z. Xu, C. Chen, Y. Wang, H. Tang, Z.-M. Li, B.S. Hsiao. Graphene Nanosheets and Shear Flow Induced Crystallization in Isotactic Polypropylene Nanocomposites, Macromolecules, 44 (2011), 2808-2818.
[27] Q. Beuguel, S.A.E. Boyer, D. Settipani, G. Monge, J.-M. Haudin, B. Vergnes, E. Peuvrel-Disdier. Crystallization behavior of polypropylene/graphene nanoplatelets composites, Polym. Crystal., 1 (2018), e10024.
[28] A. Rodrigues, B.d.M. Carvalho, L.A. Pinheiro, R.E.S. Bretãs, S.V. Canevarolo, J. Marini. Effect of compatibilization and reprocessing on the isothermal crystallization kinetics of polypropylene/wood flour composites, Polímeros, 23 (2013), 312-319.
[29] J.-B. Chen, J.-Z. Xu, H. Pang, G.-J. Zhong, L. Xu, H. Tang, J.-H. Tang, Z.-M. Li. Crystallization of isotactic polypropylene inside dense networks of carbon nanofillers, J. Appl. Polym. Sci., 131(2014) , doi: 10.1002/app.39505.
[30] S. Zhao, F. Chen, Y. Huang, J.-Y. Dong, C.C. Han. Crystallization behaviors in the isotactic polypropylene/graphene composites, Polymer, 55 (2014), 4125-4135.
[31] D. Tang, S. Li, J. Yang, J. Su, Q. Yang, M. Kong, Y. Huang, X. Liao. Nonisothermal and isothermal crystallization behavior of isotactic polypropylene/chemically reduced graphene nanocomposites, Polym. Compos., 38 (2017), E342-E350.
[32] G. Xu, W. Shi, P. Hu, S. Mo. Crystallization kinetics of polypropylene with hyperbranched polyurethane acrylate being used as a toughening agent, Eur. Polym. J., 41 (2005), 1828-1837.
[33] X. Shi, J. Wang, B. Jiang, Y. Yang. Influence of nanofiller dimensionality on the crystallization behavior of HDPE/carbon nanocomposites, J. Appl. Polym. Sci., 128 (2013), 3609-3618.
[34] W.Y. Zhou, B. Duan, M. Wang, W.L. Cheung. Crystallization kinetics of poly(L-lactide)/carbonated hydroxyapatite nanocomposite microspheres, J. Appl. Polym. Sci., 113 (2009), 4100-4115.
[35] A.T. Lorenzo, M.L. Arnal, J. Albuerne, A.J. Müller. DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: Guidelines to avoid common problems, Polym. Test., 26 (2007), 222-231.
[36] S. Deng, Z. Lin, B. Xu, W. Qiu, K. Liang, W. Li. Isothermal crystallization kinetics, morphology, and thermal conductivity of graphene nanoplatelets/polyphenylene sulfide composites, J. Therm. Anal. Calorim., 118 (2014), 197-203.
[37] J. Qin, S. Guo, Z. Li. Melting behavior and isothermal crystallization kinetics of PP/mLLDPE blends, J. Polym. Res., 15 (2008), 413-420.
[38] S. Gupta, X. Yuan, T.C.M. Chung, M. Cakmak, R.A. Weiss. Isothermal and non-isothermal crystallization kinetics of hydroxyl-functionalized polypropylene, Polymer, 55 (2014), 924-935.
[39] Z.-f. Bai, Q. Dou. Non-isothermal crystallization kinetics of polypropylene/poly(lactic acid)/maleic anhydride-grafted polypropylene blends, J. Therm. Anal. Calorim., 126 (2016), 785-794.