Theoretical Evaluation of Hydroxyapatite: The Effect of Structural Modification on Mechanical Properties

Document Type : Research Article

Authors

1 Color & Polymer Research Center (CPRC), Amirkabir University of Technology, Tehran, Iran

2 Amirkabir University of Technology

/AMNC.2018.6.24.7

Abstract

In this study, we explore the mechanical properties of the pure and strontium doped calcium hydroxyapatites by means of density functional theory computations. It has been demonstrated that strontium incorporation into hydroxyapatite can promote the solubility of apatite and osteocalcin levels as well. However, the influence of the structural modification on the mechanical characteristics must be identified before using them as biocompatible fillers in hybrid materials. Initially, the obtained structural parameters by geometry optimization are good consistent with the reported experimental values indicating accuracy of the calculations. Six independent elastic constants, bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and elastic anisotropy are computed and compared in detail. The analysis of the elastic constants and other moduli discovers higher anisotropy on elasticity for the modified compound. Finally, the origins of these features which appear in various mechanical properties have been comprehensively discussed using density of states for these two materials.

Keywords

Main Subjects


[1] A. Haider, S. Haider, S. S. Han, I.K. Kang, Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite: a review, RSC Adv. 7 (2017) 7442-7458.
[2] D.Haverty, S.A.M. Tofail, K.T. Stanton, J. B. McMonagle, Structure and stability of hydroxyapatite: Density functional calculation and Rietveld analysis, Phys. Rev. B 71 (2005) 094103.
[3] A. Szczes, L. Hołysz, E. Chibowski, Synthesis of hydroxyapatite for biomedical applications, Adv. Colloid Interface Sci. 249 (2017) 321-330.
[4] S. Mondal, U. Pal, A. Dey, Natural origin hydroxyapatite scaffold as potential bone tissue engineering substitute, Ceram Int. 42 (2016) 18338-18346.
[5] P. Makvandi, C.E. Corcione, F. Paladini, A.L. Gallo, Antimicrobial modified hydroxyapatite composite dental bite by stereolithography, Polym. Adv. Technol. 29 (2017) 364-371.
[6] H. Shao, J. He, T. Lin, Z. Zhang, Y. Zhang, S. Liu, 3D gel-printing of hydroxyapatite scaffold for bone tissue engineering, Ceram Int. 45 (2019) 1163-1170.
[7] I.Y. Grubova, M.A. Surmeneva, S. Huygh, R.A. Surmenev, E.C. Neyts, Density functional theory study of interface interactions in hydroxyapatite/rutile composites for biomedical applications, J. Phys. Chem. C 121 (2017) 15687-15695.
[8] F. Liu, B. Sun, X. Jiang, S.S. Aldeyab, Q. Zhang, M. Zhu, Mechanical properties of dental resin/composite containing urchin-like hydroxyapatite, Dent. Mater. 30 (2014) 1358-1368.
[9] L. Calabrese, F. Fabiano, M. Curro, C. Borsellino, L.M. Bonaccorsi, V. Fabiano, R. Ientile, E. Proverbio, Hydroxyapatite whiskers based resin composite versus commercial dental composites: mechanical and biocompatibility characterization, Adv. Mater. Sci. Eng. 2016 (2016) 1-9.
[10] H. C. Blair, Q.C. Larrouture, Yanan Li, Hang Lin, Donna Beer-Stoltz, Li Liu, Rocky S. Tuan, Lisa J. Robinson, Paul H. Schlesinger, Deborah J. Nelson, Osteoblast differentiation and bone matrix formation in vivo and in vitro, Tissue Eng. Part B Rev. 23 (2017) 268-280.
[11] F. Giustino, Materials modelling using density functional theory: properties and predictions, OUP Oxford, 2014.
[12] K. Hirose, T. Ono, First-principles calculations in real-space formalism: electronic configurations and transport properties of nanostructures, Imperial College Pr, 2005.
[13] W. Kohn, Electronic structure of matter: wave functions and density functionals, Nobel Lecture, January 28, 1999.
[14] N.Y. Mostafa, P.W. Brown, Computer simulation of stoichiometric hydroxyapatite: Structure and substitutions, J. Phys. Chem. Solids 68 (2007) 431-437.
[15] S.S. Bhat, U.V. Waghmare, U. Ramamurty, First-principles study of structure, vibrational, and elastic properties of stoichiometric and calcium-deficient hydroxyapatite, Cryst. Growth Des. 14 (2014) 3131-3141.
[16] Z. Yuan, S. Li, J. Liu, X. Kong, T. Gao, Structural, electronic, dynamical and thermodynamic properties of Ca10(PO4)6(OH)2 and Sr10(PO4)6(OH)2: First-principles study, ‎Int. J. Hydrog. Energy 43 (2018) 13639-13648.
[17] K. Matsunaga, A. Kuwabara, First-principles study of vacancy formation in hydroxyapatite, Phys. Rev. B 75 (2007) 014102.
[18] J.M. Hughes, M. Cameron, K.D. Crowley, Structural variations in natural F, OH, and Cl apatites, Am. Mineral. 74 (1989) 870-876.
[19] M.C. Murad, I. Sopyan, S. Ramesh, Strontium-doped hydroxyapatite nanopowder via sol-gel method: effect of strontium concentration and calcination temperature on phase behavior, Trends Biomater. Artif. Organs. 23 (2009) 105-113.
[20] S.S. Bhat, U.V. Waghmare, U. Ramamurty, First-principles study of structure, vibrational, and elastic properties of stoichiometric and calcium-deficient hydroxyapatite, Cryst. Growth Des. 14 (2014) 3131-3141.
[21] J.L. Katz, K. Ukraincik, On the anisotropic elastic properties of hydroxyapatite, J. Biomech. 4 (1971) 221-227.
[22] W. Voigt, Lehrb. Kristallphys, B.G. Teubner, Ed., The University of Michigan: Ann Arbor, MI, 1928.
[23] A. Reuss, Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals, Z. Angew. Math. Mech. 9 (1929) 49-58.
[24] R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc., Sect. A 65 (1952) 349.
[25] R.S. Gilmore, J. L. Katz, Elastic properties of apatites, J. Mater. Sci. 17 (1982) 1131-1141.
[26] M. Wang, C. Xia, Y. Wu, D. Chen, Z. Chen, N. Ma, H. Wang, Phase stability, elastic and electronic properties of Hf-Rh intermetallic compounds from first principles calculations, RSC Adv. 7 (2017) 20241-20251.
[27] S. Chen, Y. Sun, Y. H. Duan, B. Huang, M.J. Peng, Phase stability, structural and elastic properties of C15-type Laves transition-metal compounds MCo2 from first-principles calculations, J. Alloys Compd. 630 (2015) 202-208.
[28] R.L. Sakaguchi, B.D. Wiltbank, C.F. Murchison, Prediction of composite elastic modulus and polymerization shrinkage by computational micromechanics, Dent. Mater. 20 (2004) 397-401.
[29] E. Kraisler, L. Kronik, Fundamental gaps with approximate density functionals: The derivative discontinuity revealed from ensemble considerations, J. Chem. Phys. 140 (2014) 18A540-18A549.