Evaluation of microstructure and mechanical properties of Al-Cr/Al2O3 claddings produced by GTAW process

Document Type : Research Article

Authors

1 Advanced Materials Research center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran

2 Department of Materials and Metallurgical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran

3 Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.

/amnc.2019.8.29.1

Abstract

In this research, the cladding process was done using the mechanically alloyed Al-Cr and Al-Cr2O3 powder mixtures by GTAW process on the surface of CK45 steel. After creating the AlCr2 and AlCr2-Al2O3 surface layers, the microstructural and microhardness of the claddings were studied by optical microscopy, scanning electron microscopy and microhardness measurements. In order to evaluate the wear resistance of the claddings, pin-on-disk wear test was done. It was found that after 20 h of MA of Al-Cr powder mixture, Cr(Al) solid solution was formed. XRD analysis of created cladding by this powder mixture indicated the formation of AlCr2 phase. Also the cladding of Al-Cr2O3 powder mixture led to the formation of AlCr2 and Al2O3 phases. The microhardness of both claddings was higher than the base metal. Also the microhardness of AlCr2-Al2O3 cladding reached to about 780 HV. The predominant wear mechanism in wear test of both claddings was micro-cutting abrasive wear. The wear weight loss of AlCr2 cladding was about 0.2 mg, while AlCr2-Al2O3 cladding did not show any weight loss. The friction coefficient of AlCr2-Al2O3 cladding after 200 m of sliding distance was about 0.15 which reached to about 0.35 at longer sliding distances. This increase in friction coefficient of this cladding as compared with AlCr2 cladding was related to the presence of Al2O3 hard particles in this cladding.

Keywords

Main Subjects


[1] م، کوکبی، م، محمودی غزنوی، تکنولوژی جوشکاری، چاپ اول، دانشگاه صنعتی شریف، تهران، (1374).
[2] C. Borcher, Microstructure and Mechanical Properties of Medium-Carbon steel Bonded on low-Carbon Steel by Explosive Welding, Journal of Materials and Design, 89(2015) 369-378.
[3] ع، رجایی، سخت کاری سطحی سوپر آلیاژهای پایه نیکل اینکونل 718 با سوپر آلیاژهای پایه کبالت و پایه نیکل به روش جوشکاری قوسی تنگستن-گاز، دانشکده مهندسی مواد، دانشگاه آزاد اسلامی واحد نجف آباد، گزارش علمی، (1392).
[4] م، صالحی، ف، اشرفی زاده، متالورژی سطح و تریبولوژی، انجمن علوم و تکنولوژی سطوح ایران، (1374) 55-106.
[5] R. E. Reed-Hill, R. Abbaschian, Physical Metallurgy Principles, Thomson-Engineering. ISBN 0-534-92173-6, (2015).
[6] ا.ح، کوکبی ، تکنولوژی جوشکاری، انتشارات آزاده، (1374)، 92-100.
[7] Guide for welding Iron Castings, An American National Standard, AWS D1-1, (2002)2-89.
[8] J. Namkung, M.C. Kim. W.W. Park, Fabrication of Fe-Cr-Al base alloy strips by melt dragging and their oxidation resistance at elevated temperature, J. Materials processing technology, 52(2011)3394-3404.
[9] J. Song, Q. Deng, C. Chen, D. Hu, Y. Li, Rebuilding of metal components with laser cladding forming, Applied Surface Science, 252(2006)7934-7940.
[10] Z.G. Zhang, F. Gesmando, P.Y. Hou Ceriteria for the formation of protective Al2O3 scales on Fe-Al and Fe-Cr-Al, Corrosion Science, 48(2006)741-765.
[11] S. Hao, L. Zhao, D. He, Surface microstructure and high temperature corrosion resistance of arc-sprayed Fe Al Cr coating irradiated by high current pulsed election beam, Nuclear instrument and method in physic research B, 312(2013)97-103.
[12] S. Buytoz, Microstructural Properties of M7C3 Eutectic Carbides in Fe-Cr-C Alloy, Materials Letters, 60(2006)605-608.
[13] ح، ثابت، ش، میردامادی، ش، خیراندیش، م، گودرزی، مقایسه سختی و مقاومت به سایش لایه‌‌های سخت شده سطحی حاوی کروم بر‌‌روی فولاد ساده کربنی توسط فرآیند جوشکاری GTAW، سومین همایش مشترک انجمن مهندسین متالورژی ایران و انجمن ریخته‌‌گران ایران، کرمان، (1388).
[14] M.G. Pujar, R.K. Dayal, R.K.S. Raman, Miicrostructural and aqueous corrosion aspects of laser-surface-melted type 304 SS plasma-coated mild steel, J. Mater. Eng. Perform., 3(1994)412-418.
[15] C. Capdivila, M.K. Miller, Phase separation kinetic in Fe-Cr-Al alloys, Acta materialia, 60(2012)4673-4684.
[16] M. Galano, F. Audebert, I.C. Stone, B. Cantor, Transsition Electron microscopic investigation on microstructure of Fe-Cr-Al alloys, Journal of material science, 34(1999)1791-1798.
[17] J.R. Regina, J.N. Dupont, The effect of chromium on the weldability and microstructure of Fe-Cr-Al welding, Welding Journal, 86(2007)170-176.
[18] J.N. Dupont, K.D. Adams, Improving the weldability of Fe-Cr-Al alloys through, TiC addition, Welding Journal, 90(2009)130-136.
[19] H. Pouraliakbar, M. Hamedia, A.H. Kokabia, A. Nazarib, Designing of CK45 Carbon Steel and AISI 304 Stainless Steel Dissimilar Welds, Materials Research, 17(2014)106-114.
[20] Friction, Lubrication and Wear Technology, ASM Handbook, 18(1992).
[21] م، شمعانیان، م، حاجیان فروشانی، ارزیابی ریزساختار و رفتار سایشی چدن داکتیل زمینه فریتی پوشش داده شده با آلیاژ پایه نیکل پر کروم، علوم و مهندسی سطح، 25(1394) 85-95.
[22] R. Arabi Jashvaghani, M. Jaberzadeh, H. Zohdi, M. Shamanian, Microstructural study and wear behavior of ductile iron surface alloyed by Inconel 617, Materials and Design, 54(2014)491-497.