Influence of the Presence of Silver Nanowires on the hardness, tribological behavior and Corrosion Properties of Aluminum Anodizing coating

Document Type : Research Article

Authors

1 Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran

2 Professor of Materials Engineering, Isfahan University of Technology, Iran

3 Department of Materials Engineering, Isfahan University of Technolog, Isfahan, Iran

/amnc.2019.8.30.2

Abstract

anodizing due to the significant increase in the surface performance of aluminum and its alloys is an appropriate method in the field of surface engineering. But for the application of this method as much as possible, filling the porosity of this coating is a very effective selection. On the other hand, due to the unique structure of the oxide layer, this layer can also be used to grow a variety of nanowires. In this study, 1070 aluminum anodizing was performed in oxalic acid-sulfuric acid solution. Microstructure of the coating was studied by means of field emmision scanning electron microscopy (FESEM) images. Subsequently, silver nanowires were grown in the oxid layer by electrochemical deposition method. The result of X-ray diffraction(XRD) test showed that the oxide layer has a non-crystalline structure and silver nanowires has a very high purity. . The growth of silver in the oxid coating resulted in a 55% increase in the wear resistance. The scanning electron microscopy (SEM) images of the wear surfaces showed that this increase is related to silver lubrication nature that have reduced the coefficient of friction of the coating in the presence of these fillers. The effect of these nanowires on the corrosion resistance of anodized aluminum was studied by using electrochemical impedance and TOEFL polarization tests

Keywords

Main Subjects


[1] S. A. Abdel-Gawad, W. M. Osman, A. M. Fekry, Characterization and corrosion behavior of anodized aluminum alloys for military industries applications in artificial seawater, Surfaces and Interfaces, 14(2019), 314-323.‏
[2] ل. عدل نسب، ا. مقصودی، بررسی پارامترهای موثر در تشکیل ساختارهای نانومتخلخل و منظم اکسید آلومینیم آندایزشده، نشریه علمی پژوهشی مواد پیشرفته و پوشش‌های نوین، 21(1396)، 1541-1531.
[3] L. Bouchama, N. Azzouz, N. Boukmouche, J. P. Chopart, A. L. Daltin, A. Y. Bouznit, Enhancing aluminum corrosion resistance by two-step anodizing process, Surface and Coatings Technology, 235(2013), 676-684.‏
[4] H. C. Chuang, G. Y. Hong, J. Sanchez, Fabrication of high aspect ratio copper nanowires using supercritical CO2 fluids electroplating technique in AAO template, Materials Science in Semiconductor Processing, 45(2016), 17-26.‏
[5] N. Verma, K. C. Singh, J. Jindal, Fabrication of nanomaterials on porous anodic alumina template using various techniques, Indian J Adv Chem Sci, 3(2015), 235-246.‏
[6] F. Muench, Metal Nanotube/Nanowire-Based Unsupported Network Electrocatalysts, Catalysts, 8(2018), 5951-597.‏
[7] X. Y. Sun, F. Q. Xu, Z. M. Li, W. H. Zhang, Cyclic voltammetry for the fabrication of high dense silver nanowire arrays with the assistance of AAO template, Materials Chemistry and Physics, 90(2005), 69-72.‏
[8] W. Chen, S. Tang, M. Lu, Y. Du, The magnetic properties and reversal of Fe–Co nanowire arrays, Journal of Physics: Condensed Matter, 15(2003), 4623.‏
[9] T. Mehmood, A. Mukhtar, B. S. Khan, K. Wu, Growth Mechanism of Electrodeposited Fe, Co and Ni Nanowires in the Form of Self-Assembled Arrays at Fixed Potential, Int. J. Electrochem. Sci., 11(2016), 6423-31.‏
[10] P. G. Schiavi, P. Altimari, A. Rubino, F. Pagnanelli, Electrodeposition of cobalt nanowires into alumina templates generated by one-step anodization, Electrochimica Acta, 259(2018), 711-722.‏
[11] S. Alirezaei, S. M. Monirvaghefi, M. Urgen, A. Saatchi, K. Kazmanli, Novel investigation on nanostructure Ni–P–Ag composite coatings, Applied Surface Science, 261(2012), 155-158.‏
[12] M. P. Kumar, C. Srivastava, Morphological and electrochemical characterization of electrodeposited Zn–Ag nanoparticle composite coating, Materials Characterization, 85(2013) 82-91.‏
[13] S. Alirezaei, S. M. Monirvaghefi, A. Saatchi, M. Urgen, K. Kazmanlı, Novel investigation on tribological properties of Ni–P–Ag–Al2O3 hybrid nanocomposite coatings, Tribology International, 62(2013), 110–116.
[14] A. O. Araoyinbo, A. Rahmat, M. N. Derman, K. R. Ahmad, Room temperature anodization of aluminum and the effect of the electrochemical cell in the formation of porous alumina films from acid and alkaline electrolytes, Adv. Mat. Lett, 3(2012), 273-278.‏
[15] G. Patermarakis, The origin of nucleation and development of porous nanostructure of anodic alumina films, Journal of Electroanalytical Chemistry, 635(2009), 39-50.‏
[16] R. K. Choudhary, P. Mishra, V. Kain, K. Singh, S. Kumar, J. K. Chakravartty, Scratch behavior of aluminum anodized in oxalic acid: effect of anodizing potential, Surface and Coatings Technology, 283(2015), 135-147.‏
[17] W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz, U. Gösele, Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium, Nature nanotechnology, 3(2008), 234.‏
[18] S. S. Yazdi, F. Ashrafizadeh, A. Hakimizad, Improving the grain structure and adhesion of Ni-P coating to 3004 aluminum substrate by nanostructured anodic film interlayer, Surface and Coatings Technology, 232(2013), 561-566.‏
[19] J. Wang, Q. Wu, The effects of anodic interlayer on the morphology and mechanical performances of electroless Ni–P coating on Al alloy, Applied Physics A, 123(2017), 435.‏
[20] S. Stojadinovic, R. Vasilic, Z. Nedic, B. Kasalica, I. Belca, L. Zekovic, Photoluminescent properties of barrier anodic oxide films on aluminum, Thin Solid Films, 519(2011), 3516-3521.‏
[21] T. T. Kao, Y. C. Chang, Influence of anodization parameters on the volume expansion of anodic aluminum oxide formed in mixed solution of phosphoric and oxalic acids, Applied Surface Science, 288(2014), 654-659.‏
[22] R. K. Choudhary, P. Mishra, V. Kain, K. Singh, S. Kumar, J. K. Chakravartty, Scratch behavior of aluminum anodized in oxalic acid: effect of anodizing potential, Surface and Coatings Technology, 283(2015), 135-147.‏
[23] T. S. Narayanan, S. K. Seshadri, Recent Advances in Surface Treatment And Electrodeposition, Corrosion Reviews, 27(2009), 533-600.‏
[24] H. S. Kim, D. H. Kim, W. Lee, S. J. Cho, J. H. Hahn, H. S. Ahn, Tribological properties of nanoporous anodic aluminum oxide film, Surface and Coatings Technology, 205(2010), 1431-1437.‏
[25] C. J. Jang, W. S. Kim, H. C. Kim, J. J. Lee, J. W. Jeong, Study on the Nano and Micro Surface Morphology Effects on Interfacial Strength of Adhesively Bonded Bimaterials, Procedia Engineering, 10(2011), 2585-2590.‏
[26] V. Feliu, J. A. González, C. Adrade, S. Feliu, Equivalent circuit for modelling the steel-concrete interface. II. Complications in applying the stern-geary equation to corrosion rate determinations, Corrosion science, 40(1998), 995-1006.‏
[27] R. O. Hussein, D. O. Northwood, X. Nie, The influence of pulse timing and current mode on the microstructure and corrosion behaviour of a plasma electrolytic oxidation (PEO) coated AM60B magnesium alloy, Journal of Alloys and Compounds, 541(2012), 41-48.‏
[28] V. Moutarlier, M. P. Gigandet, B. Normand, J. Pagetti, EIS characterisation of anodic films formed on 2024 aluminium alloy, in sulphuric acid containing molybdate or permanganate species, Corrosion Science, 47(2005), 937-951.‏
[29] V. Moutarlier, M. P. Gigandet, B. Normand, J. Pagetti, Electrochemical characterisation of anodic oxidation films formed in presence of corrosion inhibitors, Applied Surface Science, 183(2001), 1-9.‏
[30] C. T. Chu, P. D. Fuqua, J. D. Barrie, Corrosion characterization of durable silver coatings by electrochemical impedance spectroscopy and accelerated environmental testing, Applied optics, 45(2006), 1583-1593.‏