مروری بر روش های سنتز، مشخصه یابی و کاربرد مکسن (MXene) به عنوان جاذب‌های امواج مایکروویو

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه شیمی، آزمایشگاه تحقیقاتی شیمی کاربردی، دانشکده علوم، دانشگاه زنجان، زنجان، ، ایران

2 دانشیار، گروه شیمی، آزمایشگاه تحقیقاتی شیمی کاربردی، دانشکده علوم، دانشگاه زنجان، زنجان، ، ایران

3 دانشجوی دکترا، گروه شیمی، آزمایشگاه تحقیقاتی شیمی کاربردی، دانشکده علوم، دانشگاه زنجان، زنجان، ، ایران

چکیده

پیشرفت‌های اخیر حاکی از آن است که یک خانواده‌ی بزرگ و جدیدی از فلزات واسطه‌ی دوبعدی متشکل از کاربیدها، کربونیتریدها و نیتریدها با نام عمومی مکسن (MXene) توجه زیادی را به خود جلب کرده‌اند. مکسن‌ها دارای خصوصیات فیزیکی و شیمیایی قابل توجه با تنوع غنی از عناصر اساسی هستند. جهت تنظیم موثر خواص مکسن‌ها در راستای دستیابی به کاربردهای مختلف، می‌توان آن‌ها را به آسانی با مواد دیگری همچون پلیمرها، اکسیدها و نانولوله‌های کربنی ترکیب کرد. به دلیل سرشار شدن زندگی روزمره‌ی بشر از آلودگی امواج الکترومغناطیسی (EM) که تهدیدکننده‌ی سلامت انسان است، توسعه‌ی مواد پیشرفته‌ی جاذب امواج مایکروویو به موضوع مهمی مبدل گشته است. مواد دوبعدی مانند مکسن‌ها، گرافن و مولیبدن دی سولفید (MoS2) به دلیل ساختار خاص، رسانایی الکتریکی عالی، سطح غنی و استحکام مکانیکی خوب دارای خواص الکترومغناطیسی منحصربه‌فردی بوده و کاربردهای بالقوه‌ای در جذب امواج الکترومغناطیسی، محافظت و استتار امواج مایکروویو دارند. در همین راستا مکسن‌ها به دلیل دارا بودن ساختارها و خواص مطلوبی مانند ساختار لایه‌ای ویژه، گروه‌های عاملی فعال سطحی فراوان و قابل تنظیم، هدایت الکتریکی فوق‌العاده و سطح ویژه بالا، به عنوان کاندیدای مناسب برای جاذب‌های امواج مایکروویو با کارایی بالا تبدیل شد‌اند. در این مقاله، در ابتدا روش‌های سنتز و خواص مکسن‌ها خلاصه شده و سپس پیشرفت‌های اخیر آن‌ها را در کاربردهای مرتبط با حوزه-ی جاذب‌های امواج مایکروویو که از اهمیت بسزایی برخوردار هستند، بررسی شده است. در نهایت چالش‌ها و افق‌های روشن تحقیقات آینده در زمینه‌ی مواد دو بعدی جدید مکسن مطرح گردیده‌ است.

کلیدواژه‌ها

موضوعات


 [1] Shao, Yuyan, Jun Wang, Hong Wu,
Jun Liu, Ilhan A. Aksay, and Yuehe Lin.
"Graphene based electrochemical sensors
and biosensors: a review." Electroanalysis:
An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 22, no. 10 (2010): 1027-1036.
[2] Allen, Matthew J., Vincent C. Tung,
and Richard B. Kaner. "Honeycomb carbon:
a review of graphene." Chemical reviews
110, no. 1 (2010): 132-145.
[3] Mattevi, Cecilia, Hokwon Kim, and
Manish Chhowalla. "A review of chemical
vapour deposition of graphene on copper."
Journal of Materials Chemistry 21, no. 10
(2011): 3324-3334.
[4] Wang, Haibo, Thandavarayan Maiyalagan, and Xin Wang. "Review on recent
progress in nitrogen-doped graphene: synthesis, characterization, and its potential
applications." AcS catalysis 2, no. 5 (2012):
781-794.
[5] Li, Likai, Yijun Yu, Guo Jun Ye,
Qingqin Ge, Xuedong Ou, Hua Wu, Donglai
Feng, Xian Hui Chen, and Yuanbo Zhang.
"Black phosphorus field-effect transistors."
Nature nanotechnology 9, no. 5 (2014): 372-
377.
[6] Lalmi, Boubekeur, Hamid Oughaddou, Hanna Enriquez, Abdelkader Kara,
Sébastien Vizzini, Bénidicte Ealet, and Bernard Aufray. "Epitaxial growth of a silicene
sheet." Applied Physics Letters 97, no. 22
(2010): 223109.
[7] Dávila, M. E., Lede Xian, Seymur
Cahangirov, Angel Rubio, and Guy Le Lay.
"Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene." New Journal of Physics 16, no. 9
(2014): 095002.
[8] Liu, Han, Adam T. Neal, Zhen Zhu,
Zhe Luo, Xianfan Xu, David Tománek, and
Peide D. Ye. "Phosphorene: an unexplored
2D semiconductor with a high hole mobility." ACS nano 8, no. 4 (2014): 4033-4041.
[9] Cahangirov, Seymur, Mehmet
  Topsakal, Ethem Aktürk, Hasan Şahin, and
Salim Ciraci. "Two-and one-dimensional
honeycomb structures of silicon and germanium." Physical review letters 102, no. 23
(2009): 236804.
[10] Bhimanapati, Ganesh R., Zhong Lin,
Vincent Meunier, Yeonwoong Jung, Judy
Cha, Saptarshi Das, Di Xiao et al. "Recent
advances in two-dimensional materials beyond graphene." ACS nano 9, no. 12 (2015):
11509-11539.
[11] Tang, Xiao, Xin Guo, Wenjian Wu,
and Guoxiu Wang. "2D metal carbides and
nitrides (MXenes) as high-performance
electrode materials for Lithium-based batteries." Advanced Energy Materials 8, no.
33 (2018): 1801897.
[12] Anasori, Babak, Maria R. Lukatskaya, and Yury Gogotsi. "2D metal carbides
and nitrides (MXenes) for energy storage."
Nature Reviews Materials 2, no. 2 (2017):
1-17.
[13] Gogotsi, Y., and B. Anasori. "ACS
Nano 2019, 13, 8491; b) M. Naguib, VN
Mochalin, MW Barsoum, Y. Gogotsi." Adv.
Mater 26 (2014): 992-1005.
[14] Hantanasirisakul, Kanit, and Yury
Gogotsi. "Electronic and optical properties
of 2D transition metal carbides and nitrides
(MXenes)." Advanced Materials 30, no. 52
(2018): 1804779.
[15] Khazaei, Mohammad, Ahmad Ranjbar, Masao Arai, Taizo Sasaki, and Seiji Yunoki. "Electronic properties and applications
of MXenes: a theoretical review." Journal
of Materials Chemistry C 5, no. 10 (2017):
2488-2503.
[16] Liu, Yi-Tao, Xiao-Dong Zhu, and
Long Pan. "Hybrid architectures based on
2D MXenes and low-dimensional inorganic
nanostructures: methods, synergies, and energy-related applications." Small 14, no. 51
(2018): 1803632.
[17] Nan, J., X. Guo, J. Xiao, X. Li, W.
Chen, W. Wu, H. Liu, Y. Wang, M. Wu, and
G. Wang. "Small, 2019, e1902085."
[18] Ng, Vincent Ming Hong, Hui Huang,
Kun Zhou, Pooi See Lee, Wenxiu Que, Jason
Zhichuan Xu, and Ling Bing Kong. "Recent
progress in layered transition metal carbides
and/or nitrides (MXenes) and their composites: synthesis and applications." Journal
of Materials Chemistry A 5, no. 7 (2017):
3039-3068.
[19] Barsoum, Michel W., and Tamer ElRaghy. "The MAX phases: Unique new carbide and nitride materials: Ternary ceramics
turn out to be surprisingly soft and machinable, yet also heat-tolerant, strong and lightweight." American scientist 89, no. 4 (2001):
334-343.
[20] Barsoum, Michel W. "The
MN+1AXN phases: A new class of solids:
Thermodynamically stable nanolaminates."
Progress in solid state chemistry 28, no. 1-4
(2000): 201-281.
[21] Sun, Z. M. "Progress in research and
development on MAX phases: a family of
layered ternary compounds." International
Materials Reviews 56, no. 3 (2011): 143-
166.
[22] Högberg, Hans, Lars Hultman, Jens
Emmerlich, Torbjörn Joelsson, Per Eklund,
Jon M. Molina-Aldareguia, J-P. Palmquist,
Ola Wilhelmsson, and Ulf Jansson. "Growth
and characterization of MAX-phase thin
films." Surface and Coatings Technology
193, no. 1-3 (2005): 6-10.
[23] Zhang, Xiaodong, Jianguang Xu,
Hui Wang, Jiajia Zhang, Hanbing Yan, Bicai
Pan, Jingfang Zhou, and Yi Xie. "Ultrathin
nanosheets of MAX phases with enhanced
thermal and mechanical properties in polymeric compositions: Ti3Si0.75Al0.25C2."
Angewandte Chemie International Edition
52, no. 16 (2013): 4361-4365.
[24] Naguib, Michael, Murat Kurtoglu,
Volker Presser, Jun Lu, Junjie Niu, Min
Heon, Lars Hultman, Yury Gogotsi, and
Michel W. Barsoum. "Two-dimensional nanocrystals produced by exfoliation of
Ti3AlC2." Advanced materials 23, no. 37
(2011): 4248-4253.
[25] Berdiyorov, Golibjon R., and Khaled
A. Mahmoud. "Effect of surface termination
on ion intercalation selectivity of bilayer
  Ti3C2T2 (T= F, O and OH) MXene." Applied Surface Science 416 (2017): 725-730.
[26] Li, Shuang, Ping Tuo, Junfeng Xie,
Xiaodong Zhang, Jianguang Xu, Jian Bao,
Bicai Pan, and Yi Xie. "Ultrathin MXene
nanosheets with rich fluorine termination
groups realizing efficient electrocatalytic hydrogen evolution." Nano Energy 47 (2018):
512-518.
[27] Zhan, Xiaoxue, Chen Si, Jian Zhou,
and Zhimei Sun. "MXene and MXene-based
composites: synthesis, properties and environment-related applications." Nanoscale
Horizons 5, no. 2 (2020): 235-258.
[28] Gogotsi, Yury, and Qing Huang.
"MXenes: two-dimensional building blocks
for future materials and devices." ACS nano
15, no. 4 (2021): 5775-5780.
[29] Zhu, Kai, Yuming Jin, Fei Du,
Shuang Gao, Zhongmin Gao, Xing Meng,
Gang Chen, Yingjin Wei, and Yu Gao. "Synthesis of Ti2CTx MXene as electrode materials for symmetric supercapacitor with
capable volumetric capacitance." Journal of
energy chemistry 31 (2019): 11-18.
[30] Naguib, Michael, Joseph Halim, Jun
Lu, Kevin M. Cook, Lars Hultman, Yury
Gogotsi, and Michel W. Barsoum. "New
two-dimensional niobium and vanadium
carbides as promising materials for Li-ion
batteries." Journal of the American Chemical
Society 135, no. 43 (2013): 15966-15969.
[31] VahidMohammadi, Armin, Ali Hadjikhani, Sina Shahbazmohamadi, and Majid Beidaghi. "Two-dimensional vanadium
carbide (MXene) as a high-capacity cathode
material for rechargeable aluminum batteries." ACS nano 11, no. 11 (2017): 11135-
11144.
[32] Soundiraraju, Bhuvaneswari, and
Benny Kattikkanal George. "Two-dimensional titanium nitride (Ti2N) MXene: synthesis, characterization, and potential application as surface-enhanced Raman scattering
substrate." ACS nano 11, no. 9 (2017): 8892-
8900.
[33] Naguib, Michael, Olha Mashtalir,
Joshua Carle, Volker Presser, Jun Lu, Lars
Hultman, Yury Gogotsi, and Michel W. Barsoum. "Two-dimensional transition metal
carbides." ACS nano 6, no. 2 (2012): 1322-
1331.
[34] Tao, Quanzheng, Martin Dahlqvist,
Jun Lu, Sankalp Kota, Rahele Meshkian, Joseph Halim, Justinas Palisaitis et al. "Two-dimensional Mo1.33C MXene with divacancy
ordering prepared from parent 3D laminate
with in-plane chemical ordering." Nature
communications 8, no. 1 (2017): 14949.
[35] Halim, Joseph, Justinas Palisaitis,
Jun Lu, J. Thörnberg, E. J. Moon, M. Precner,
P. Eklund, PO Å. Persson, M. W. Barsoum,
and J. Rosen. "Synthesis of two-dimensional
Nb1.33C (MXene) with randomly distributed vacancies by etching of the quaternary
solid solution (Nb2/3Sc1/3)2AlC MAX
phase." ACS Applied Nano Materials 1, no.
6 (2018): 2455-2460.
[36] Meshkian, Rahele, Martin Dahlqvist, Jun Lu, Björn Wickman, Joseph Halim, Jimmy Thörnberg, Quanzheng Tao et
al. "W-based atomic laminates and their 2D
derivative W1. 33C MXene with vacancy
ordering." Advanced Materials 30, no. 21
(2018): 1706409.
[37] Wang, Xuefeng, Xi Shen, Yurui Gao,
Zhaoxiang Wang, Richeng Yu, and Liquan
Chen. "Atomic-scale recognition of surface
structure and intercalation mechanism of
Ti3C2X." Journal of the American Chemical
Society 137, no. 7 (2015): 2715-2721.
[38] Wang, Hsiu-Wen, Michael Naguib,
Katharine Page, David J. Wesolowski, and
Yury Gogotsi. "Resolving the structure of
Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function." Chemistry of Materials 28,
no. 1 (2016): 349-359.
[39] Zhao, Shuangshuang, Xing Meng,
Kai Zhu, Fei Du, Gang Chen, Yingjin Wei,
Yury Gogotsi, and Yu Gao. "Li-ion uptake
and increase in interlayer spacing of Nb4C3
MXene." Energy Storage Materials 8 (2017):
42-48.
[40] Tran, Minh H., Timo Schäfer, Ali
Shahraei, Michael Dürrschnabel, Leopoldo
  Molina-Luna, Ulrike I. Kramm, and Christina S. Birkel. "Adding a new member to
the MXene family: synthesis, structure,
and electrocatalytic activity for the hydrogen evolution reaction of V4C3Tx." ACS
Applied Energy Materials 1, no. 8 (2018):
3908-3914.
[41] Anasori, Babak, Yu Xie, Majid
Beidaghi, Jun Lu, Brian C. Hosler, Lars
Hultman, Paul RC Kent, Yury Gogotsi, and
Michel W. Barsoum. "Two-dimensional,
ordered, double transition metals carbides
(MXenes)." ACS nano 9, no. 10 (2015):
9507-9516.
[42] Ghidiu, Michael, Maria R. Lukatskaya, Meng-Qiang Zhao, Yury Gogotsi, and
Michel W. Barsoum. "Conductive two-dimensional titanium carbide ‘clay’with high
volumetric capacitance." Nature 516, no.
7529 (2014): 78-81.
[43] Kajiyama, Satoshi, Lucie Szabova,
Keitaro Sodeyama, Hiroki Iinuma, Ryohei Morita, Kazuma Gotoh, Yoshitaka Tateyama, Masashi Okubo, and Atsuo Yamada. "Sodium-ion intercalation mechanism
in MXene nanosheets." ACS nano 10, no. 3
(2016): 3334-3341.
[44] Anasori, B., Y. Xie, M. Beidaghi, J.
Lu, B. C. Hosler, L. Hultman, P. R. C. Kent,
Y. Gogotsi, and M. W. Barsoum. "ACS
Nano 2015, 9, 9507; d) J. Halim, S. Kota,
MR Lukatskaya, M. Naguib, M." Q. Zhao,
EJ Moon, J. Pitock, J. Nanda, SJ May, Y.
Gogotsi, MW Barsoum, Adv. Funct. Mater
26 (2016): 3118.
[45] Liu, Fanfan, Jie Zhou, Shuwei
Wang, Bingxin Wang, Cai Shen, Libo Wang,
Qianku Hu, Qing Huang, and Aiguo Zhou.
"Preparation of high-purity V2C MXene and
electrochemical properties as Li-ion batteries." Journal of the Electrochemical Society
164, no. 4 (2017): A709.
[46] Du, Fei, Huan Tang, Limei Pan, Tian
Zhang, Hanmei Lu, Jie Xiong, Jian Yang,
and Chuanfang John Zhang. "Environmental friendly scalable production of colloidal
2D titanium carbonitride MXene with minimized nanosheets restacking for excellent
cycle life lithium-ion batteries." Electrochimica Acta 235 (2017): 690-699.
[47] Anasori, Babak, Yu Xie, Majid
Beidaghi, Jun Lu, Brian C. Hosler, Lars
Hultman, Paul RC Kent, Yury Gogotsi, and
Michel W. Barsoum. "Two-dimensional,
ordered, double transition metals carbides
(MXenes)." ACS nano 9, no. 10 (2015):
9507-9516.
[48] Yang, Jian, Michael Naguib, Michael
Ghidiu, Li-Mei Pan, Jian Gu, Jagjit Nanda,
Joseph Halim, Yury Gogotsi, and Michel
W. Barsoum. "Two-dimensional Nb-based
M4C3 solid solutions (MXenes)." Journal
of the American Ceramic Society 99, no. 2
(2016): 660-666.
[49] Bai, Yuelei, Kun Zhou, Narasimalu Srikanth, John HL Pang, Xiaodong He,
and Rongguo Wang. "Dependence of elastic
and optical properties on surface terminated
groups in two-dimensional MXene monolayers: a first-principles study." RSC advances 6, no. 42 (2016): 35731-35739.
[50] Zha, Xian-Hu, Kan Luo, Qiuwu Li,
Qing Huang, Jian He, Xiaodong Wen, and
Shiyu Du. "Role of the surface effect on the
structural, electronic and mechanical properties of the carbide MXenes." Europhysics
Letters 111, no. 2 (2015): 26007.
[51] Guo, Zhonglu, Jian Zhou, Chen Si,
and Zhimei Sun. "Flexible two-dimensional
Tin+1Cn (n= 1, 2 and 3) and their functionalized MXenes predicted by density functional theories." Physical Chemistry Chemical Physics 17, no. 23 (2015): 15348-15354.
[52] Khazaei, Mohammad, Masao Arai,
Taizo Sasaki, Ahmad Ranjbar, Yunye Liang,
and Seiji Yunoki. "OH-terminated two-dimensional transition metal carbides and nitrides as ultralow work function materials."
Physical Review B 92, no. 7 (2015): 075411.
[53] Liu, Yuanyue, Hai Xiao, and William
A. Goddard III. "Schottky-barrier-free contacts with two-dimensional semiconductors
by surface-engineered MXenes." Journal of
the American Chemical Society 138, no. 49
(2016): 15853-15856.
[54] Xu, Jiao, Jaewoo Shim, Jin‐Hong
  Park, and Sungjoo Lee. "MXene electrode
for the integration of WSe2 and MoS2 field
effect transistors." Advanced Functional
Materials 26, no. 29 (2016): 5328-5334.
[55] Wang, Guo. "Theoretical prediction of the intrinsic half-metallicity in surface-oxygen-passivated Cr2N MXene." The
Journal of Physical Chemistry C 120, no. 33
(2016): 18850-18857.
[56] Gao, Guoying, Guangqian Ding,
Jie Li, Kailun Yao, Menghao Wu, and Meichun Qian. "Monolayer MXenes: promising
half-metals and spin gapless semiconductors." Nanoscale 8, no. 16 (2016): 8986-
8994.
[57] Si, Chen, Jian Zhou, and Zhimei Sun.
"Half-metallic ferromagnetism and surface
functionalization-induced metal–insulator
transition in graphene-like two-dimensional
Cr2C crystals." ACS applied materials & interfaces 7, no. 31 (2015): 17510-17515.
[58] Hu, Lin, Xiaojun Wu, and Jinlong
Yang. "Mn 2 C monolayer: a 2D antiferromagnetic metal with high Néel temperature
and large spin–orbit coupling." Nanoscale 8,
no. 26 (2016): 12939-12945.
[59] Ahmad, Husnain, Asra Tariq, Amir
Shehzad, Muhammad S. Faheem, Muhammad Shafiq, Iqra A. Rashid, Ayesha Afzal et
al. "Stealth technology: Methods and composite materials—A review." Polymer Composites 40, no. 12 (2019): 4457-4472.
[60] He, Peng, Meng-Jiao Zheng, Qi Liu,
Zi-Yi Liu, Ru-Zhong Zuo, Wen-Qiang Cao,
Jie Yuan, and Mao-Sheng Cao. "MXene nanohybrids: Excellent electromagnetic properties for absorbing electromagnetic waves."
Ceramics International 48, no. 2 (2022):
1484-1493.
[61] Dai, Binzhou, Biao Zhao, Xi Xie,
Tingting Su, Bingbing Fan, Rui Zhang, and
Rui Yang. "Novel two-dimensional Ti3C2Tx
MXenes/nano-carbon sphere hybrids for
high-performance microwave absorption."
Journal of Materials Chemistry C 6, no. 21
(2018): 5690-5697.
[62] He, Peng, Mao-Sheng Cao, JinCheng Shu, Yong-Zhu Cai, Xi-Xi Wang,
Quan-Liang Zhao, and Jie Yuan. "Atomic
layer tailoring titanium carbide MXene to
tune transport and polarization for utilization
of electromagnetic energy beyond solar and
chemical energy." ACS Applied Materials &
Interfaces 11, no. 13 (2019): 12535-12543.
[63] Li, Xinliang, Yin, Xiaowei, Xu,
Hailong, Han, Meikang, Li, Minghang,
Liang, Shuang, Cheng, Laifei, Zhang, Litong. “Ultralight MXene-Coated, Interconnected SiCnws Three-Dimensional Lamellar
Foams for Efficient Microwave Absorption
in the X-Band” ACS Applied Materials &
Interfaces 10 (2018) 34524e34533.
[64] Li, Xinliang, Xiaowei Yin, Changqing Song, Meikang Han, Hailong Xu, Wenyan Duan, Laifei Cheng, and Litong Zhang.
"Self-assembly core–shell graphene-bridged
hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance."
Advanced Functional Materials 28, no. 41
(2018): 1803938.
[65] Wei, H.W., Dong, J.D., Fang, X.J.,
Zheng, W.H., Sun, Y.T., Qian, Y., Jiang,
Z.X., Huang, Y.D. “Ti3C2Tx MXene/polyaniline (PANI) sandwich intercalation structure composites constructed for microwave
absorption.” Composite Science and Technology 169 (2019): 52-59.
[66] Zeng, Xiaojun, Xiaoyu Cheng, Ronghai Yu, and Galen D. Stucky. "Electromagnetic microwave absorption theory and recent achievements in microwave absorbers."
Carbon 168 (2020): 606-623.
[67] Liu, Ji, Hao-Bin Zhang, Renhui
Sun, Yafeng Liu, Zhangshuo Liu, Aiguo
Zhou, and Zhong-Zhen Yu. "Hydrophobic,
flexible, and lightweight MXene foams for
high-performance electromagnetic-interference shielding." Advanced Materials 29, no.
38 (2017): 1702367.
[68] Li, Xinliang, Xiaowei Yin, Shuang
Liang, Minghang Li, Laifei Cheng, and Litong Zhang. "2D carbide MXene Ti2CTX as
a novel high-performance electromagnetic
interference shielding material." Carbon 146
(2019): 210-217.
[69] He, Peng, Xi-Xi Wang, Yong-Zhu
  Cai, Jin-Cheng Shu, Quan-Liang Zhao,
Jie Yuan, and Mao-Sheng Cao. "Tailoring
Ti3C2Tx nanosheets to tune local conductive network as an environmentally friendly
material for highly efficient electromagnetic
interference shielding." Nanoscale 11, no.
13 (2019): 6080-6088.
[70] Naguib, Michael, Murat Kurtoglu,
Volker Presser, Jun Lu, Junjie Niu, Min
Heon, Lars Hultman, Yury Gogotsi, and
Michel W. Barsoum. "Two-dimensional nanocrystals produced by exfoliation of
Ti3AlC2." Advanced materials 23, no. 37
(2011): 4248-4253.
[71] Cui, Guangzhen, Xin Zheng,
Xuliang Lv, Qi Jia, Wei Xie, and Guangxin
Gu. "Synthesis and microwave absorption of
Ti3C2Tx MXene with diverse reactant concentration, reaction time, and reaction temperature." Ceramics International 45, no. 17
(2019): 23600-23610.
[72] Liu, Ji, Hao-Bin Zhang, Renhui
Sun, Yafeng Liu, Zhangshuo Liu, Aiguo
Zhou, and Zhong-Zhen Yu. "Hydrophobic,
flexible, and lightweight MXene foams for
high-performance electromagnetic-interference shielding." Advanced Materials 29, no.
38 (2017): 1702367.
[73] Feng, Wanlin, Heng Luo, Sifan Zeng,
Chen Chen, Lianwen Deng, Yongqiang Tan,
Xiaosong Zhou, Shuming Peng, and Haibin
Zhang. "Ni-modified Ti3C2 MXene with enhanced microwave absorbing ability." Materials Chemistry Frontiers 2, no. 12 (2018):
2320-2326.
[74] Liang, Luyang, Gaojie Han, Yang
Li, Biao Zhao, Bing Zhou, Yuezhan Feng,
Jianmin Ma, Yaming Wang, Rui Zhang, and
Chuntai Liu. "Promising Ti3C2Tx MXene/
Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity." ACS Applied Materials & Interfaces 11,
no. 28 (2019): 25399-25409.
[75] Wang, Shi-Jun, Dian-Sen Li, and Lei
Jiang. "Synergistic effects between MXenes
and Ni chains in flexible and ultrathin electromagnetic interference shielding films."
Advanced Materials Interfaces 6, no. 19
(2019): 1900961.
[76] Qian, Yue, Huawei Wei, Jidong
Dong, Yunzhe Du, Xiaojiao Fang, Wenhui Zheng, Yutong Sun, and Zaixing Jiang.
"Fabrication of urchin-like ZnO-MXene nanocomposites for high-performance electromagnetic absorption." Ceramics International 43, no. 14 (2017): 10757-10762.
[77] Deng, Ruixiang, Bingbing Chen,
Haogeng Li, Ke Zhang, Tao Zhang, Yun Yu,
and Lixin Song. "MXene/Co3O4 composite
material: Stable synthesis and its enhanced
broadband microwave absorption." Applied
Surface Science 488 (2019): 921-930.
[78] He, Jun, Dongyong Shan, Shuoqing
Yan, Heng Luo, Can Cao, and Yuhui Peng.
"Magnetic FeCo nanoparticles-decorated
Ti3C2 MXene with enhanced microwave
absorption performance." Journal of Magnetism and Magnetic Materials 492 (2019):
165639.
[79] Zhou, Congli, Xiaoxia Wang, Heng
Luo, Lianwen Deng, Shiliang Wang, Shuang
Wei, Yiwei Zheng, Qiang Jia, and Jingquan
Liu. "Interfacial design of sandwich-like
CoFe@Ti3C2Tx composites as high efficient microwave absorption materials." Applied Surface Science 494 (2019): 540-550.
[80] Yu, Fei, Xingjie Wang, Rong Du,
Fuyi Jiang, and Yanli Zhou. "ZnFe2O4 nanoparticles decorated Ti3C2Tx nanosheet as
anode materials for enhanced lithium storage." Materials Letters 253 (2019): 162-165.
[81] Li, Youbing, Xiaobing Zhou, Jing
Wang, Qihuang Deng, Mian Li, Shiyu Du,
Young-Hwan Han, Jaehyung Lee, and Qing
Huang. "Facile preparation of in situ coated
Ti3C2Tx/Ni0.5Zn0.5Fe2O4 composites and
their electromagnetic performance." Rsc
Advances 7, no. 40 (2017): 24698-24708.
[82] Liu, Peijiang, Vincent Ming Hong
Ng, Zhengjun Yao, Jintang Zhou, and Ling
Bing Kong. "Ultrasmall Fe3O4 nanoparticles on MXenes with high microwave absorption performance." Materials Letters
229 (2018): 286-289.
[83] Cai, Yanzhi, Nan Wang, Laifei Cheng, Xiaowei Yin, Hongfeng Yin,
  Yuan Wang, Xuanxuan Ren, Xuan Li, and
Xiaomeng Fan. "Electrical conductivity
and electromagnetic shielding properties of
Ti3SiC2/SiC functionally graded materials prepared by positioning impregnation."
Journal of the European Ceramic Society 39,
no. 13 (2019): 3643-3650.
[84] Han, Meikang, Xiaowei Yin, Xinliang Li, Babak Anasori, Litong Zhang, Laifei Cheng, and Yury Gogotsi. "Laminated
and two-dimensional carbon-supported microwave absorbers derived from MXenes."
ACS applied materials & interfaces 9, no. 23
(2017): 20038-20045.
[85] Wei, Huawei, Jidong Dong, Xiaojiao Fang, Wenhui Zheng, Yutong Sun, Yue
Qian, Zaixing Jiang, and Yudong Huang.
"Ti3C2Tx MXene/polyaniline (PANI) sandwich intercalation structure composites constructed for microwave absorption." Composites Science and Technology 169 (2019):
52-59.
[86] Li, Xinliang, Xiaowei Yin, Hailong
Xu, Meikang Han, Minghang Li, Shuang
Liang, Laifei Cheng, and Litong Zhang.
"Ultralight MXene-coated, interconnected
SiCnws three-dimensional lamellar foams
for efficient microwave absorption in the
X-band." ACS applied materials & interfaces 10, no. 40 (2018): 34524-34533.
[87] Li, Mian, Meikang Han, Jie Zhou, Qihuang Deng, Xiaobing Zhou, Jianmin Xue,
Shiyu Du, Xiaowei Yin, and Qing Huang.
"Novel scale-like structures of graphite/TiC/
Ti3C2 hybrids for electromagnetic absorption." Advanced Electronic Materials 4, no.
5 (2018): 1700617.
[88] Wang, Yan, Xiang Gao, Lijuan
Zhang, Xinming Wu, Qiguan Wang, Chunyan Luo, and Guanglei Wu. "Synthesis of
Ti3C2/Fe3O4/PANI hierarchical architecture composite as an efficient wide-band
electromagnetic absorber." Applied Surface
Science 480 (2019): 830-838.
[89] Yang, Haibo, Jingjing Dai, Xiao Liu,
Ying Lin, Jingjing Wang, Lei Wang, and Fen
Wang. "Layered PVB/Ba3Co2Fe24O41/
Ti3C2 Mxene composite: enhanced electromagnetic wave absorption properties with
high impedance match in a wide frequency
range." Materials Chemistry and Physics
200 (2017): 179-186.
[90] Xin, Wei, Guo-Qiang Xi, Wen-Tao
Cao, Chang Ma, Tong Liu, Ming-Guo Ma,
and Jing Bian. "Lightweight and flexible
MXene/CNF/silver composite membranes
with a brick-like structure and high-performance electromagnetic-interference shielding." RSC advances 9, no. 51 (2019): 29636-
29644.
[91] Han, Meikang, Xiaowei Yin, Heng
Wu, Zexin Hou, Changqing Song, Xinliang
Li, Litong Zhang, and Laifei Cheng. "Ti3C2
MXenes with modified surface for high-performance electromagnetic absorption and
shielding in the X-band." ACS applied materials & interfaces 8, no. 32 (2016): 21011-
21019.
[92] Jiang, Yue, Xi Xie, Yu Chen, Yujing
Liu, Rui Yang, and Guoxin Sui. "Hierarchically structured cellulose aerogels with
interconnected MXene networks and their
enhanced microwave absorption properties."
Journal of Materials Chemistry C 6, no. 32
(2018): 8679-8687.
[93] Feng, Wanlin, Heng Luo, Yu Wang,
Sifan Zeng, Yongqiang Tan, Lianwen Deng,
Xiaosong Zhou, Haibin Zhang, and Shuming Peng. "Mxenes derived laminated and
magnetic composites with excellent microwave absorbing performance." Scientific reports 9, no. 1 (2019): 3957.
[94] Liu, Peijiang, Zhengjun Yao, Vincent Ming Hong Ng, Jintang Zhou, and Ling
Bing Kong. "Novel multilayer-like structure
of Ti3C2Tx/CNZF composites for low-frequency electromagnetic absorption." Materials Letters 248 (2019): 214-217.
[95] Zhang, Xiang, Hehe Wang, Rui Hu,
Chenyang Huang, Wengjin Zhong, Limei
Pan, Yongbao Feng, Tai Qiu, Chuanfang
John Zhang, and Jian Yang. "Novel solvothermal preparation and enhanced microwave absorption properties of Ti3C2Tx
MXene modified by in situ coated Fe3O4
nanoparticles." Applied Surface Science 484
  (2019): 383-391.
[96] Li, Ning, Xi Xie, Hongxia Lu, Bingbing Fan, Xiaohui Wang, Biao Zhao, Rui
Zhang, and Rui Yang. "Novel two-dimensional Ti3C2Tx/Ni-spheres hybrids with enhanced microwave absorption properties."
Ceramics International 45, no. 17 (2019):
22880-22888.
[97] Hou, Tianqi, Bingbing Wang, Mingliang Ma, Ailing Feng, Zhengyong Huang, Yi
Zhang, Zirui Jia, Guangxin Tan, Haijie Cao,
and Guanglei Wu. "Preparation of two-dimensional titanium carbide (Ti3C2Tx) and
NiCo2O4 composites to achieve excellent
microwave absorption properties." Composites Part B: Engineering 180 (2020): 107577.
[98] Li, Ran, Xiaoyuan Ma, Jianmin Li,
Jun Cao, Hongze Gao, Tianshu Li, Xiaoyu
Zhang et al. "Flexible and high-performance
electrochromic devices enabled by self-assembled 2D TiO2/MXene heterostructures."
Nature Communications 12, no. 1 (2021):
1587.
[99] Shahzad, Faisal, Mohamed Alhabeb, Christine B. Hatter, Babak Anasori, Soon Man Hong, Chong Min Koo, and
Yury Gogotsi. "Electromagnetic interference
shielding with 2D transition metal carbides
(MXenes)." Science 353, no. 6304 (2016):
1137-1140.
[100] Wu, Han, Yimei Xie, Yanan Ma, Binbin Zhang, Bin Xia, Pengxiang Zhang, Wei
Qian et al. "Aqueous MXene/Xanthan Gum
Hybrid Inks for Screen-Printing Electromagnetic Shielding, Joule Heater, and Piezoresistive Sensor." Small 18, no. 16 (2022):
2107087.
[101] Huang, Xianwu, Jiahui Huang,
Guishu Zhou, Yanwei Wei, Peiyi Wu, Angang Dong, and Dong Yang. "Gelation-Assisted Assembly of Large-Area, Highly
Aligned, and Environmentally Stable MXene Films with an Excellent Trade-Off between Mechanical and Electrical Properties." Small 18, no. 21 (2022): 2200829.
[102] Wang, Jie, Xiaoyan Ma, Jiale Zhou,
Fanglin Du, and Chao Teng. "Bioinspired,
high-strength, and flexible MXene/aramid
fiber for electromagnetic interference shielding papers with Joule heating performance."
ACS nano 16, no. 4 (2022): 6700-6711.
[103] Song, Qiang, Fang Ye, Xiaowei Yin,
Wei Li, Hejun Li, Yongsheng Liu, Kezhi
Li et al. "Carbon nanotube–multilayered
graphene edge plane core–shell hybrid
foams for ultrahigh-performance electromagnetic-interference shielding." Advanced
Materials 29, no. 31 (2017): 1701583.
[104] Han, Meikang, Christopher Eugene
Shuck, Roman Rakhmanov, David Parchment, Babak Anasori, Chong Min Koo,
Gary Friedman, and Yury Gogotsi. "Beyond
Ti3C2Tx: MXenes for electromagnetic interference shielding." ACS nano 14, no. 4
(2020): 5008-5016.
[105] Wei, Yi, Peng Zhang, Razium A.
Soomro, Qizhen Zhu, and Bin Xu. "Advances in the synthesis of 2D MXenes." Advanced
materials 33, no. 39 (2021): 2103148.
[106] Li, Tian, Dan-Dan Zhi, Zi-Hao Guo,
Jin-Zhe Li, Yao Chen, and Fan-Bin Meng.
"3D porous biomass-derived carbon materials: biomass sources, controllable transformation and microwave absorption application." Green Chemistry 24, no. 2 (2022):
647-674.
[107] Shi, Yuyang, Zhen Xiang, Lei Cai,
Fei Pan, Yanyan Dong, Xiaojie Zhu, Jie
Cheng, Haojie Jiang, and Wei Lu. "Multi-interface assembled N-doped MXene/HCFG/
AgNW films for wearable electromagnetic
shielding devices with multimodal energy
conversion and healthcare monitoring performances." ACS nano 16, no. 5 (2022):
7816-7833.
[108] Sun, Renhui, Hao-Bin Zhang, Ji Liu,
Xi Xie, Rui Yang, Yue Li, Song Hong, and
Zhong-Zhen Yu. "Highly conductive transition metal carbide/carbonitride (MXene)@
polystyrene nanocomposites fabricated by
electrostatic assembly for highly efficient
electromagnetic interference shielding."
Advanced Functional Materials 27, no. 45
(2017): 1702807.
[109] Koo, Chong Min, Pradeep Sambyal,
Aamir Iqbal, Faisal Shahzad, and Junpyo
  Hong. Two-Dimensional Materials for Electromagnetic Shielding. John Wiley & Sons,
2021.
[110] Li, Ya, Xiaofang Liu, Xiaoyu Nie,
Wenwen Yang, Yidong Wang, Ronghai Yu,
and Jianglan Shui. "Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient
microwave absorbing material." Advanced
Functional Materials 29, no. 10 (2019):
1807624.
[111] Liang, Luyang, Qianming Li, Xu
Yan, Yuezhan Feng, Yaming Wang, HaoBin Zhang, Xingping Zhou, Chuntai Liu,
Changyu Shen, and Xiaolin Xie. "Multifunctional magnetic Ti3C2Tx MXene/graphene
aerogel with superior electromagnetic wave
absorption performance." ACS nano 15, no.
4 (2021): 6622-6632.
[112] Han, Meikang, Xiaowei Yin, Heng
Wu, Zexin Hou, Changqing Song, Xinliang
Li, Litong Zhang, and Laifei Cheng. "Ti3C2
MXenes with modified surface for high-performance electromagnetic absorption and
shielding in the X-band." ACS applied materials & interfaces 8, no. 32 (2016): 21011-
21019.
[113] Li, Ruosong, Qiang Gao, Hongna
Xing, Yangzhe Su, Hongming Zhang, Dan
Zeng, Bingbing Fan, and Biao Zhao. "Lightweight, multifunctional MXene/polymer
composites with enhanced electromagnetic
wave absorption and high-performance thermal conductivity." Carbon 183 (2021): 301-
312.
[114] Sun, Fengqiang, Mingwei Tian, Xuantong Sun, Tailin Xu, Xuqing Liu, Shifeng
Zhu, Xueji Zhang, and Lijun Qu. "Stretchable conductive fibers of ultrahigh tensile
strain and stable conductance enabled by a
worm-shaped graphene microlayer." Nano
letters 19, no. 9 (2019): 6592-6599.
[115] Li, Lei, Mengke Shi, Xiaoya Liu,
Xiuxiu Jin, Yanxia Cao, Yanyu Yang, Wanjie
Wang, and Jianfeng Wang. "Ultrathin titanium carbide (MXene) films for high-temperature thermal camouflage." Advanced Functional Materials 31, no. 35 (2021): 2101381.
[116] Zhang, Zhiwei, Zhihao Cai, Yi
Zhang, Yaling Peng, Ziyuan Wang, Lun Xia,
Suping Ma et al. "The recent progress of
MXene-Based microwave absorption materials." Carbon 174 (2021): 484-499.
[117] Guo, Xiangdong, Ning Li, Chenchen
Wu, Xiaokang Dai, Ruishi Qi, Tianyu Qiao,
Tuoyi Su et al. "Studying Plasmon Dispersion of MXene for Enhanced Electromagnetic Absorption (Adv. Mater. 33/2022)."
Advanced Materials 34, no. 33 (2022):
2270237.
[118] Liang, Leilei, Weihua Gu, Yue Wu,
Baoshan Zhang, Gehuan Wang, Yi Yang, and
Guangbin Ji. "Heterointerface engineering
in electromagnetic absorbers: new insights
and opportunities." Advanced Materials 34,
no. 4 (2022): 2106195.
[119] Ren, Huaying, Liming Zheng, Guorui Wang, Xin Gao, Zhenjun Tan, Jingyuan Shan, Lingzhi Cui et al. "Transfer-medium-free nanofiber-reinforced graphene
film and applications in wearable transparent pressure sensors." Acs Nano 13, no. 5
(2019): 5541-5548.
[120] Qin, Zhen, Yingying Yin, Wenzheng
Zhang, Congju Li, and Kai Pan. "Wearable
and stretchable triboelectric nanogenerator based on crumpled nanofibrous membranes." ACS applied materials & interfaces
11, no. 13 (2019): 12452-12459.
[121] Nie, Baoqing, Ruya Li, Jennifer Cao,
James D. Brandt, and Tingrui Pan. "Flexible
transparent iontronic film for interfacial capacitive pressure sensing." Advanced Materials 27, no. 39 (2015): 6055-6062.
[122] Malakooti, Mohammad H., Navid
Kazem, Jiajun Yan, Chengfeng Pan, Eric J.
Markvicka, Krzysztof Matyjaszewski, and
Carmel Majidi. "Liquid metal supercooling
for low-temperature thermoelectric wearables." Advanced functional materials 29, no.
45 (2019): 1906098.
[123] Yun, Taeyeong, Hyerim Kim, Aamir
Iqbal, Yong Soo Cho, Gang San Lee, MyungKi Kim, Seon Joon Kim et al. "Electromagnetic shielding of monolayer MXene assemblies." Advanced Materials 32, no. 9 (2020):
  1906769.
[124] Sun, Kang, Fan Wang, Wenke Yang,
Hu Liu, Caofeng Pan, Zhanhu Guo, Chuntai
Liu, and Changyu Shen. "Flexible conductive polyimide fiber/MXene composite film
for electromagnetic interference shielding
and joule heating with excellent harsh environment tolerance." ACS applied materials & interfaces 13, no. 42 (2021): 50368-
50380.
[125] Zhou, Bing, Mengjie Su, Daozheng
Yang, Gaojie Han, Yuezhan Feng, Bo Wang,
Jialu Ma, Jianmin Ma, Chuntai Liu, and
Changyu Shen. "Flexible MXene/silver nanowire-based transparent conductive film
with electromagnetic interference shielding
and electro-photo-thermal performance."
ACS applied materials & interfaces 12, no.
36 (2020): 40859-40869.
[126] Anasori, M. R. "Lukatskaya, and Y.
Gogotsi." Nat. Rev. Mater 2, no. 2 (2017):
16098.
[127] Naguib, Michael, Murat Kurtoglu,
Volker Presser, Jun Lu, Junjie Niu, Min
Heon, Lars Hultman, Yury Gogotsi, and
Michel W. Barsoum. "Two-dimensional nanocrystals produced by exfoliation of
Ti3AlC2." Advanced materials 23, no. 37
(2011): 4248-4253.
[128] Gupta, Shivam, and Nyan-Hwa Tai.
"Carbon materials and their composites for
electromagnetic interference shielding effectiveness in X-band." Carbon 152 (2019):
159-187.
[129] Song, Weina, Chunying He, Wang
Zhang, Yachen Gao, Yixiao Yang, Yiqun
Wu, Zhimin Chen, Xiaochen Li, and Yongli Dong. "Synthesis and nonlinear optical
properties of reduced graphene oxide hybrid
material covalently functionalized with zinc
phthalocyanine." Carbon 77 (2014): 1020-
1030.
[130] Gai, Lixue, Yumeng Zhao, Guilin
Song, Qingda An, Zuoyi Xiao, Shangru
Zhai, and Zhongcheng Li. "Construction of
core-shell PPy@MoS2 with nanotube-like
heterostructures for electromagnetic wave
absorption: Assembly and enhanced mechanism." Composites Part A: Applied Science
and Manufacturing 136 (2020): 105965.
[131] Dikin, Dmitriy A., Sasha Stankovich, Eric J. Zimney, Richard D. Piner,
Geoffrey HB Dommett, Guennadi Evmenenko, SonBinh T. Nguyen, and Rodney S.
Ruoff. "Preparation and characterization of
graphene oxide paper." Nature 448, no. 7152
(2007): 457-460.
[132] Li, Mian, Meikang Han, Jie Zhou, Qihuang Deng, Xiaobing Zhou, Jianmin Xue,
Shiyu Du, Xiaowei Yin, and Qing Huang.
"Novel scale-like structures of graphite/TiC/
Ti3C2 hybrids for electromagnetic absorption." Advanced Electronic Materials 4, no.
5 (2018): 1700617.
[133] Zhang, Xiao, Jia Xu, Xiaoye Liu,
Shen Zhang, Haoran Yuan, Chunling Zhu,
Xitian Zhang, and Yujin Chen. "Metal organic framework-derived three-dimensional
graphene-supported nitrogen-doped carbon
nanotube spheres for electromagnetic wave
absorption with ultralow filler mass loading." Carbon 155 (2019): 233-242.
[134] Zhang, Xinci, Jia Xu, Haoran Yuan,
Shen Zhang, Qiuyun Ouyang, Chunling
Zhu, Xitian Zhang, and Yujin Chen. "Largescale synthesis of three-dimensional reduced
graphene oxide/nitrogen-doped carbon nanotube heteronanostructures as highly efficient electromagnetic wave absorbing materials." ACS applied materials & interfaces
11, no. 42 (2019): 39100-39108.
[135] Zhang, Xu, Xiaoqun Wang, Fanbo
Meng, Jiajun Chen, and Shanyi Du. "Broadband and strong electromagnetic wave absorption of epoxy composites filled with
ultralow content of non-covalently modified reduced graphene oxides." Carbon 154
(2019): 115-124.
[136] Huang, Yixing, Xujin Yuan, Mingji
Chen, Wei-Li Song, Jin Chen, Qunfu Fan,
Liqun Tang, and Daining Fang. "Ultrathin
multifunctional carbon/glass fiber reinforced
lossy lattice metastructure for integrated design of broadband microwave absorption
and effective load bearing." Carbon 144
(2019): 449-456.
  [137] Mo, Ran, Xiaowei Yin, Fang Ye,
Xiaofei Liu, Xiaokang Ma, Quan Li, Litong
Zhang, and Laifei Cheng. "Electromagnetic
wave absorption and mechanical properties
of silicon carbide fibers reinforced silicon
nitride matrix composites." Journal of the
European Ceramic Society 39, no. 4 (2019):
743-754.
[138] Xin, Wei, Guo-Qiang Xi, Wen-Tao
Cao, Chang Ma, Tong Liu, Ming-Guo Ma,
and Jing Bian. "Lightweight and flexible
MXene/CNF/silver composite membranes
with a brick-like structure and high-performance electromagnetic-interference shielding." RSC advances 9, no. 51 (2019): 29636-
29644.
[139] Sambyal, Pradeep, Aamir Iqbal,
Junpyo Hong, Hyerim Kim, Myung-Ki
Kim, Soon Man Hong, Meikang Han, Yury
Gogotsi, and Chong Min Koo. "Ultralight
and mechanically robust Ti3C2Tx hybrid
aerogel reinforced by carbon nanotubes for
electromagnetic interference shielding."
ACS Applied Materials & Interfaces 11, no.
41 (2019): 38046-38054.
[140] Li, Mian, Xiaowei Yin, Guopeng
Zheng, Meng Chen, Mingjie Tao, Laifei
Cheng, and Litong Zhang. "High-temperature dielectric and microwave absorption
properties of Si3N4–SiC/SiO2 composite
ceramics." Journal of Materials Science 50
(2015): 1478-1487.
[141] Saboor, Abdul, Saad Mahmood
Khalid, Rahim Jan, Ahmad Nawaz Khan,
Tanveer Zia, Muhammad Umer Farooq,
Shaista Afridi, Muhammad Sadiq, and Muhammad Arif. "PS/PANI/MoS2 hybrid polymer composites with high dielectric behavior and electrical conductivity for EMI
shielding effectiveness." Materials 12, no.
17 (2019): 2690.
[142] Liu, Jiaolong, Hongsheng Liang,
and Hongjing Wu. "Hierarchical flower-like
Fe3O4/MoS2 composites for selective
broadband electromagnetic wave absorption
performance." Composites Part A: Applied
Science and Manufacturing 130 (2020):
105760.
[143] Liu, Yousong, Bin Quan, Xiaohui Liang, Bing Huang, Shiliang Huang,
Xiaodong Li, Guangbin Ji, Zhong Jin, and
Guangcheng Yang. "Energetic metal-organic frameworks deflagration enabled ultrafast low-temperature synthesis of ultra-light
magnetic nanoparticles decorated high-lossy
materials." Carbon 165 (2020): 286-295.
[144] Alam, Reza Shams, Mahmood Moradi, Hossein Nikmanesh, Joao Ventura,
and Mohammad Rostami. "Magnetic and
microwave absorption properties of BaMgx
/2Mnx/2CoxTi2xFe12-4xO19 hexaferrite
nanoparticles." Journal of Magnetism and
Magnetic Materials 402 (2016): 20-27.
[145] Yang, Haibo, Jingjing Dai, Lei Wang,
Ying Lin, Fen Wang, and Pan Kang. "A
novel approach to prepare Bi2Fe4O9 flower-like spheres with enhanced photocatalytic performance." Scientific Reports 7, no. 1
(2017): 768.
[146] Lan, Di, Ming Qin, Ruisheng Yang,
Shuang Chen, Hongjing Wu, Yuancheng Fan,
Quanhong Fu, and Fuli Zhang. "Facile synthesis of hierarchical chrysanthemum-like
copper cobaltate-copper oxide composites
for enhanced microwave absorption performance." Journal of colloid and interface science 533 (2019): 481-491.
[147] Ma, Mingliang, Wenting Li, Zhouyu
Tong, Weibo Huang, Rongzhen Wang, Ping
Lyu, Yong Ma et al. "Facile synthesis of
the one-dimensional flower-like yolk-shell
Fe3O4@SiO2@NiO nanochains composites for high-performance microwave absorption." Journal of Alloys and Compounds
843 (2020): 155199.
[148] Wang, Rui, Xiaosi Qi, Ren Xie, Xiu
Gong, Chaoyong Deng, and Wei Zhong.
"Constructing heterostructural Fe@Fe3C@
carbon nanotubes/reduced graphene oxide
nanocomposites as lightweight and high-efficiency microwave absorbers." Journal of
Materials Chemistry C 8, no. 41 (2020):
14515-14522.
[149] Wang, Zhenhua, Rongli Gao, Gang
Chen, Xiaoling Deng, Wei Cai, and Chunlin Fu. "Dielectric, ferroelectric and magne
  toelectric properties of in-situ synthesized
CoFe2O4/BaTiO3 composite ceramics."
Ceramics International 46, no. 7 (2020):
9154-9160.
[150] Wang, Lei, Xuefeng Yu, Mengqiu
Huang, Wenbin You, Qingwen Zeng, Jie
Zhang, Xianhu Liu, Min Wang, and Renchao
Che. "Orientation growth modulated magnetic-carbon microspheres toward broadband electromagnetic wave absorption."
Carbon 172 (2021): 516-528.
[151] Jia, Hanxiao, Honglong Xing, Xiaoli Ji, and Shengtao Gao. "Self-template and
in-situ polymerization strategy to lightweight
hollow MnO2@polyaniline core-shell heterojunction with excellent microwave absorption properties." Applied Surface Science 537 (2021): 147857.
[152] Luo, Hui, Rongzhou Gong, Xian
Wang, Kai Song, Changming Zhu, and
Liguang Wang. "Synthesis and excellent
microwave absorption properties of reduced
graphene oxide/FeNi3/Fe3O4 composite."
New Journal of Chemistry 40, no. 7 (2016):
6238-6243.
[153] Afshar, SR Saeedi, M. Hasheminiasari, and S. M. Masoudpanah. "Structural,
magnetic and microwave absorption properties of SrFe12O19/Ni0.6Zn0.4Fe2O4 composites prepared by one-pot solution combustion method." Journal of Magnetism and
Magnetic Materials 466 (2018): 1-6.
[154] Gupta, Ankur, Tamilselvan Sakthivel, and Sudipta Seal. "Recent development
in 2D materials beyond graphene." Progress
in Materials Science 73 (2015): 44-126.
[155] Cao, Maosheng, Chen Han, Xixi
Wang, Min Zhang, Yanlan Zhang, Jincheng
Shu, Huijing Yang, Xiaoyong Fang, and Jie
Yuan. "Graphene nanohybrids: excellent
electromagnetic properties for the absorbing
and shielding of electromagnetic waves."
Journal of Materials Chemistry C 6, no. 17
(2018): 4586-4602.
[156] Yang, Jinbo, Wenyun Yang, Fashen Li, and Yingchang Yang. "Research and
development of high-performance new microwave absorbers based on rare earth transition metal compounds: a review." Journal
of Magnetism and Magnetic Materials 497
(2020): 165961.
[157] Cao, Mao-Sheng, Xi-Xi Wang,
Wen-Qiang Cao, and Jie Yuan. "Ultrathin
graphene: electrical properties and highly efficient electromagnetic interference shielding." Journal of Materials Chemistry C 3,
no. 26 (2015): 6589-6599.
[158] Meng, Fanbin, Huagao Wang, Fei
Huang, Yifan Guo, Zeyong Wang, David
Hui, and Zuowan Zhou. "Graphene-based
microwave absorbing composites: A review
and prospective." Composites Part B: Engineering 137 (2018): 260-277.
[159] Cao, Mao-sheng, Yong-Zhu Cai,
Peng He, Jin-Cheng Shu, Wen-Qiang Cao,
and Jie Yuan. "2D MXenes: electromagnetic
property for microwave absorption and electromagnetic interference shielding." Chemical Engineering Journal 359 (2019): 1265-
1302.
[160] Liu, Ji, Hao-Bin Zhang, Renhui
Sun, Yafeng Liu, Zhangshuo Liu, Aiguo
Zhou, and Zhong-Zhen Yu. "Hydrophobic,
flexible, and lightweight MXene foams for
high-performance electromagnetic-interference shielding." Advanced Materials 29, no.
38 (2017): 1702367.
[161] Liu, Ji, Hao-Bin Zhang, Renhui
Sun, Yafeng Liu, Zhangshuo Liu, Aiguo
Zhou, and Zhong-Zhen Yu. "Hydrophobic,
flexible, and lightweight MXene foams for
high-performance electromagnetic-interference shielding." Advanced Materials 29, no.
38 (2017): 1702367.
[162] Wang, Hongyu, and Hongbin Ma.
"The electromagnetic and microwave absorbing properties of MoS2 modified
Ti3C2Tx nanocomposites." Journal of Materials Science: Materials in Electronics 30
(2019): 15250-15256.
[163] Hu, Mingjun, Naibo Zhang, Guangcun Shan, Jiefeng Gao, Jinzhang Liu, and
Robert KY Li. "Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and
absorber." Frontiers of Physics 13 (2018):
  1-39.
[164] Feng, Wanlin, Heng Luo, Sifan Zeng,
Chen Chen, Lianwen Deng, Yongqiang Tan,
Xiaosong Zhou, Shuming Peng, and Haibin
Zhang. "Ni-modified Ti3C2 MXene with enhanced microwave absorbing ability." Materials Chemistry Frontiers 2, no. 12 (2018):
2320-2326.
[165] Liu, Peijiang, Zhengjun Yao, Vincent
Ming Hong Ng, Jintang Zhou, Ling Bing
Kong, and Kan Yue. "Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for
high microwave absorption performance."
Composites Part A: Applied Science and
Manufacturing 115 (2018): 371-382.
[166] Qing, Yuchang, Wancheng Zhou, Fa
Luo, and Dongmei Zhu. "Titanium carbide
(MXene) nanosheets as promising microwave absorbers." Ceramics International 42,
no. 14 (2016): 16412-16416.
[167] Song, Qiang, Fang Ye, Luo Kong,
Qingliang Shen, Liyuan Han, Lei Feng, Gaojie Yu, Yuanan Pan, and Hejun Li. "Graphene
and MXene nanomaterials: toward high-performance electromagnetic wave absorption
in gigahertz band range." Advanced Functional Materials 30, no. 31 (2020): 2000475.
[168] Xiang, Zhen, Yuyang Shi, Xiaojie
Zhu, Lei Cai, and Wei Lu. "Flexible and
waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and
photothermal conversion." Nano-Micro Letters 13, no. 1 (2021): 150.
[169] Cao, Mao-Sheng, Jin-Cheng Shu,
Bo Wen, Xi-Xi Wang, and Wen-Qiang Cao.
"Genetic dielectric genes inside 2D carbon-based materials with tunable electromagnetic function at elevated temperature."
Small Structures 2, no. 11 (2021): 2100104.
[170] Liu, Ji, Hao-Bin Zhang, Xi Xie,
Rui Yang, Zhangshuo Liu, Yafeng Liu, and
Zhong-Zhen Yu. "Multifunctional, superelastic, and lightweight MXene/polyimide
aerogels." Small 14, no. 45 (2018): 1802479.
[171] Wang, Huagao, Hesong Ren, Changfei Jing, Jinzhe Li, Qiang Zhou, and Fanbin
Meng. "Two birds with one stone: Graphene
oxide@sulfonated polyaniline nanocomposites towards high-performance electromagnetic wave absorption and corrosion protection." Composites Science and Technology
204 (2021): 108630.
[172] Guan, Xiaomeng, Zhihong Yang,
Ming Zhou, Le Yang, Reza Peymanfar,
Bagher Aslibeiki, and Guangbin Ji. "2D
MXene nanomaterials: Synthesis, mechanism, and multifunctional applications in
microwave absorption." Small Structures 3,
no. 10 (2022): 2200102.