ساخت و مشخصه یابی PIM برپایه سلولز استات به منظور جداسازی یون لیتیم در محیط آبی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 مهندسی شیمی، دانشکده مهندسی شیمی، دانشگاه تربیت مدرس، تهران، ایران

2 پژوهشگاه علوم و فنون هسته ای، تهران، ایران

3 دانشکده مهندسی شیمی، دانشگاه تربیت مدرس، تهران، ایران

4 دانشکده مهندسی شیمی, دانشگاه تربیت مدرس, تهران, ایران

چکیده

باتوجه به خواص لیتیم، یون لیتیم امروزه دارای کاربردهای فراوانی در صنایع پزشکی، داروسازی، هسته­ای و باتری سازی  است. در این پژوهش به منظور جداسازی و غنی سازی Li+، یک غشای شامل پلیمری (PIM) طراحی و آماده شد. به طور کل PIM ها دارای سه جزء اصلی است که در این پژوهش شامل سلولز استات (CA) به عنوان پلیمر پایه، مایع یونی 1-Butyl-3-Methylimidazolium Chloride (BMIMCl) به  عنوان پلاستی­سایزر و اتر تاجی نوع 12-Crown-4 (12C4) به عنوان حامل کاتیون است. تاثیر میزان اجزای مختلف روی خواص ساختاری و عملکرد غشا بررسی شد. در این بین، غشا با ترکیب درصد وزنی 30، 46 و 24 به ترتیب برای پلیمر، مایع یونی و حامل بهترین شار عبوری لیتیم را نشان داد. نتایج حاصل از آنالیز ICP نشان داد که غشا هیچگونه کاتیونی را جذب نکرده است. همچنین، با توجه به ساختار این غشای PIM، می توان به این موضوع اشاره کرد که هر یون یا ایزوتوپی را می توان بوسیله این فناوری تنها با تغییر در نوع مواد جداسازی کرد.

کلیدواژه‌ها


[1] Swain B. Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: a review. Journal of Chemical Technology & Biotechnology; 91(10): 2549-2562,  2016.

[2] Kesler S, Gruber P, Medina P, Keoleian G, Everson M, Wallington T. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geology Reviews; 48: 55-69, 2012.

[3] Czech B, Babb D, Son B, Bartsch R. Functionalized 13-crown-4, 14-crown-4, 15-crown-4, and 16-crown-4 compounds: synthesis and lithium ion complexation. Journal of Organic Chemistry; 49(25): 4805-4810, 1984.

[4] Bartsch R, Goo M, Christian G, Wen X, Czech B, Chapoteau E, Kumar A. Influence of ring substituents and matrix on lithium / sodium selectivity of 14-crown-4 and benzo-13-crown-4-compounds. Analytica Chimica Acta; 272(2): 285-292, 1993.

[5] Boulatov R, Du B, Meyers E, Shore Sh. Two Novel Lithium−15-Crown-5 Complexes:  An Extended LiCl Chain Stabilized by Crown Ether and a Dimeric Complex Stabilized by Hydrogen Bonding with Water. Inorganic Chemistry; 38(20): 4554-4558, 1999.

[6] Bansal B, Chen X, Hossain M. Transport of lithium through a supported liquid membrane of LIX54 and TOPO in kerosene. Chemical Engineering and Processing: Process Intensification; 44(12): 1327-1336, 2005.

[7] Park H, Yong J, Ik S, Klosterman L, Christopher J. Lithium purification from aqueous solutions using bioinspired redox‐active melanin membranes. Polymer International; 65(11): 1331-1338, 2016.

[8] Sun Sh, Cai L, Nie X, Song X, Yu J. Separation of magnesium and lithium from brine using a Desal nanofiltration membrane. Journal of Water Process Engineering; 7: 210-217, 2015.

[9] Hoshino T. Innovative lithium recovery technique from seawater by using world-first dialysis with a lithium ionic superconductor. Desalination; 359: 59-63, 2015.

[10] Sharma A, Patil N, Patwardhan A, Moorthy R, Ghosh P. Synergistic interplay between D2EHPA and TBP towards the extraction of lithium using hollow fiber supported liquid membrane. Separation Science and Technology; 51(13): 2242-2254, 2016.

[11] Walkowiak W, Bartsch R, Kozlowski C, Gega J, Charewicz W, Amiri-Eliasi B. Separation and Removal of Metal Ionic Species by Polymer Inclusion Membranes. Journal of Radioanalytical and Nuclear Chemistry; 146(3): 643-650, 2000.

[12] Kozlowski C, Girek T, Walkowiak W, Koziol J. Application of hydrophobic β-cyclodextrin polymer in separation of metal ions by plasticized membranes. Separation and Purification Technology; 46(3): 136-144, 2005.

[13] Ulewicz M, Lesinska U, Bochenska M, Walkowiak W. Facilitated transport of Zn(II), Cd(II) and Pb(II) ions through polymer inclusion membranes with calix[4]-crown-6 derivatives. Separation and Purification Technology; 54(3): 299-305, 2007.

[14] Pereira N, St John A, Cattrall R, Perera J, Kolev S. Influence of the composition of polymer inclusion membranes on their homogeneity and flexibility. Desalination; 236(1): 327-333, 2009.

[15] Baba Y, Kubota F, Goto M, Cattrall R, Kolev S. Separation of cobalt(II) from manganese(II) using a polymer inclusion membrane with N‐[N,N‐di(2‐ethylhexyl)aminocarbonylmethyl]glycine (D2EHAG) as the extractant/carrier. Journal of Chemical Technology & Biotechnology; 91(5): 1320-1326, 2015.

[16] Turgut H, Eyupoglu V, Kumbasar R, Sisman I. Alkyl chain length dependent Cr(VI) transport by polymer inclusion membrane using room temperature ionic liquids as carrier and PVDF-co-HFP as polymer matrix. Separation and Purification Technology; 175: 406-417, 2017.

[17] Drioli E, Davoli M, Macchi P, Bounomenna MG. Poly(vinylidene fluoride) membranes by phase inversion: the role the casting and coagulation conditions play in their morphology, crystalline structure and properties. European Polymer Journal; 43(4): 1557-1572, 2007.

[18] Pospiech B. Synergistic solvent extraction and transport of Zn (II) and Cu (II) across polymer inclusion membranes with a mixture of TOPO and Aliquat 336. Journal of Separation Science and Technology; 49(11): 1706-1712, 2014.

[19] Gierczyk B. Chapter One - NMR Studies of Crown Ether–Cyclodextrin Complexes. Annual Reports on NMR Spectroscopy; 80: 1-31, 2013.

[20] Turgut HI, Eyupoglu V, Kumbasar RA, Sisman I. Alkyl chain length dependent Cr(VI) transport by polymer inclusion membrane using room temperature ionic liquids as carrier and PVDF-co-HFP as polymer matrix. Journal of Separation and Purification Technology; 175(24): 406-417, 2017.

[21] Steed JW. First- and second-sphere coordination chemistry of alkali metal crown ether complexes. Journal of Coordination Chemistry Reviews; 215(1): 171-221, 2001.

[22] Hu J, Barbour LJ, Gokel GW. Probing alkali metal–π interactions with the side chain residue of tryptophan. Proceeding of The National Academy of Sciences of The United States of America, PNAS; 99(8): 5121-5126, 2002.

[23] Anchaliya D. Synthesis of series of redox switchable naphthaquinone derived ionophores and their use in recognition of metal ions (Li+, Na+, K+, Ca2+, Mg2+, Zn2+, Pb2+, Cu2+), Thesis for degree of Doctor of Philosophy, Vikram University, Ujjain, 2012.

[24] Yahmin Y, Pranowo HD, Armunanto R. AB initio investigation of 12-crown-4 and benzo-12-crown-4 complexes with Li+, Na+, K+, Zn 2+, Cd 2+, and Hg 2+. Indonesian Journal of Chemistry; 10(1): 106-109, 2010.