رفع آلودگی‌هوا با استفاده از فیلترهای نانولیفی مبتنی بر چارچوب‌های آلی - فلزی (MOFs) تهیه‌شده به روش الکتروریسی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشکده مهندسی نساجی، دانشگاه یزد، یزد، ایران

2 دانشجوی دکتری، دانشکده مهندسی نساجی، دانشگاه یزد، یزد، ایران

/amnc.2021.10.37.1

چکیده

امروزه به دلیل توسعه و پیشرفت صنایع مختلف در سراسر جهان مخصوصا در کشورهای توسعه یافته صنعتی، آلودگی هوا یکی از بزرگترین مشکلات جوامع مختلف بشمار می‌آید. از اینرو حل مشکلات آلودگی هوا، محیط‌زیست، بیماری و سمیت ناشی از آلودگی‌های هوا توجه محققان فراوانی را به خود جلب نموده است. این امر منجر به توسعه سریع فناوری نانو در زمینه فیلتراسیون هوا شده است. در این راستا فیلترهای نانولیفی مختلفی برای جذب و حذف ذرات آلاینده هوا تولید و مورد بررسی قرار گرفته‌اند. نانوالیاف بدلیل ســطح مخصوص بالا، تخلخل زیاد، انعطاف پذیری بالا و سهولت تولید در مقیاس‌هــای مختلف از مــواد گوناگون، پتانسیل بالایی برای بسیاری از کاربردهای زیست محیطی از جمله در نانوفیلترها و غشاها دارد. مطالعات انجام شده نشان می‌دهند که چارچوب‌های آلی-فلزی (MOFs) به عنوان دسته جدیدی از نانوجاذب‌ها برای ذخیره و جداسازی گازها، غشاهای جداکننده و انواع فیلترهای رفع آلودگی هوا مناسب هستند. ویژگی‌هایی نظیر چگالی کم، ابعاد قابل تنظیم حفره‌ها و مساحت سطح بالای آن‌ها، جذب انتخاب‌پذیر مولکول‌های کوچک و از همه مهمتر قابلیت جذب برگشت‌پذیر، این ترکیبات را به عنوان گزینه‌ای مناسب برای بکارگیری در فیلترهای نانولیفی مطرح کرده است. در این مقاله، ضمن معرفی چارچوب‌های آلی-فلزی و عملکرد فیلترهای نانولیفی، مروری جامع بر فعالیت‌های صورت گرفته بر روی فیلترهای نانولیفی و بیان پتانسیل کاربردی چارچوب‌های آلی-فلزی در بهبود عملکرد فیلترهای نانولیفی در فیلتراسیون ترکیبات آلاینده هوا پرداخته شده است.

کلیدواژه‌ها


 ]1محمد ارحامی، مریم زارع شحنه، نوید روفیگر حقیقت، وحید حسینی,
جیمز شاور، الکس لی. “ .1395آنالیز شیمیایی ذرات معلق ()
PM2.5
هوای شهر تهران به منظور مطالعات منشایابی اسفند - 92بهمن ”.93
شرکت کنترل کیفیت هوا .
MM95/08/01
[2] Y. Zhang, S. Yuan, X. Feng, H. Li, J. Zhou, and
B. Wang, “Preparation of nanofibrous metal-organic
framework filters for efficient air pollution control,”
J. Am. Chem. Soc., vol. 138, no. 18, pp. 5785–5788,
2016, doi: 10.1021/jacs.6b02553.
[3] Z. Hao, J. Wu, C. Wang, and J. Liu, “Electrospun
Polyimide/Metal-Organic Framework Nanofibrous
Membrane with Superior Thermal Stability for Efficient PM 2.5 Capture,” ACS Appl. Mater. Interfaces,
vol. 11, no. 12, pp. 11904–11909, 2019, doi: 10.1021/
acsami.8b22415.
[4] Y. Chuanfang, “Aerosol Filtration Application
Using Fibrous Media — An Industrial Perspective,”
Chinese J. Chem. Eng., vol. 20, no. 1, pp. 1–9, 2012.
[ ]5احمد موسوی شوشتری، مهدی حسن زاده، کمیل نصوری، بنت
الهدی هادوی مقدم، نگرشی بر اصول و فناوری تولید نانوساختارهای
لیفی، انتشارات دانشگاه صنعتی شریف، .1393
[6] Z. Huang, Y. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,”
Compos. Sci. Technol., vol. 63, pp. 2223–2253, 2003,
doi: 10.1016/S0266-3538(03)00178-7.
[7] B. Maddah, H. Chamani, and M. Hasanzadeh, “On
the Hydrogen Cyanide Removal from Air using Metal loaded Polyacrylonitrile Composite Nanofibers,” J.
Chem. Heal. Risks, vol. 7, no. 4, pp. 303–315, 2017.
[8] B. Maddah, A. Yavaripour, S. H. Ramedani, H.
Hosseni, and M. Hasanzadeh, “Electrospun PU nanofiber composites based on carbon nanotubes decorated with nickel-zinc ferrite particles as an adsorbent
for removal of hydrogen sulfide from air,” Environ.
Sci. Pollut. Res., vol. 27, no. 28, pp. 35515–35525,
2020, doi: 10.1007/s11356-020-09324-9.
[9] S. F. Dehghan et al., “Optimization of electrospinning parameters for polyacrylonitrile-MgO nanofibers applied in air filtration,” J. Air Waste Manag.
Assoc., vol. 66, no. 9, pp. 912–921, 2016, doi:
10.1080/10962247.2016.1162228.
[10] H. Liu, J. Huang, J. Mao, Z. Chen, G. Chen,
and Y. Lai, “Transparent Antibacterial Nanofiber
  Air Filters with Highly Efficient Moisture Resistance for Sustainable Particulate Matter Capture,”
iScience, vol. 19, pp. 214–223, 2019, doi: 10.1016/j.
isci.2019.07.020.
[11] R. Zhang et al., “Nanofiber air filters with
high-temperature stability for efficient PM2.5 removal from the pollution sources,” Nano Lett., vol.
16, no. 6, pp. 3642–3649, 2016, doi: 10.1021/acs.
nanolett.6b00771.
[12] S. Zhang, N. Tang, L. Cao, X. Yin, J. Yu, and
B. Ding, “Highly Integrated Polysulfone/Polyacrylonitrile/Polyamide-6 Air Filter for Multilevel Physical
Sieving Airborne Particles,” ACS Appl. Mater. Interfaces, vol. 8, no. 42, pp. 29062–29072, 2016, doi:
10.1021/acsami.6b10094.
[13] S. Homaeigohar and M. Elbahri, “Nanocomposite electrospun nanofiber membranes for environmental remediation,” Materials (Basel)., vol. 7, no. 2, pp.
1017–1045, 2014, doi: 10.3390/ma7021017.
[14] M. R. Armstrong et al., “UiO-66 MOF and
Poly(vinyl cinnamate) Nano fi ber Composite Membranes Synthesized by a Facile Three-Stage Process,”
2015, doi: 10.1021/acs.iecr.5b03334.
[15] B. H. Moghadam, M. Hasanzadeh, and A. Simchi, “Self-Powered Wearable Piezoelectric Sensors
Based on Polymer Nanofiber–Metal–Organic Framework Nanoparticle Composites for Arterial Pulse
Monitoring,” ACS Appl. Nano Mater., vol. 3, no. 9,
pp. 8742–8752, 2020, doi: 10.1021/acsanm.0c01551.
[16] S. Jang et al., “Application of various metalorganic frameworks (MOFs) as catalysts for air
and water pollution environmental remediation,”
Catalysts, vol. 10, no. 2, p. 195, 2020, doi: 10.3390/
catal10020195.
[17] S. Dhaka, R. Kumar, A. Deep, M. B. Kurade, S.
W. Ji, and B. H. Jeon, “Metal–organic frameworks
(MOFs) for the removal of emerging contaminants
from aquatic environments,” Coord. Chem. Rev., vol.
380, no. December 2018, pp. 330–352, 2019, doi:
10.1016/j.ccr.2018.10.003.
[18] X. Zhang et al., Metal–Organic Frameworks
(MOFs) and MOF-Derived Materials for Energy
Storage and Conversion, vol. 2, no. 1. Springer Singapore, 2019.
[19] M. Hasanzadeh, A. Simchi, and H. S. Far, “Kinetics and adsorptive study of organic dye removal using
water-stable nanoscale metal organic frameworks,”
Mater. Chem. Phys., vol. 233, pp. 267–275, May
2019, doi: 10.1016/j.matchemphys.2019.05.050.
[20] M. Hasanzadeh, A. Simchia, and H. Shahriyari
Far, “Nanoporous composites of activated carbonmetal organic frameworks for organic dye adsorption: Synthesis, adsorption mechanism and kinetics
studies,” J. Ind. Eng. Chem., vol. 81, pp. 405–414,
2020.
[21] B. N. Khiarak, M. Hasanzadeh, M. Mojaddami,
H. Shahriyar Far, and A. Simchi, “ In situ synthesis of
quasi-needle-like bimetallic organic frameworks on
highly porous graphene scaffolds for efficient electrocatalytic water oxidation ,” Chem. Commun., pp.
0–3, 2020, doi: 10.1039/c9cc09908e.
[22] H. S. Far, M. Hasanzadeh, M. S. Nashtaei,
M. Rabbani, A. Haji, and B. Hadavi Moghadam,
“PPI-Dendrimer-Functionalized Magnetic MetalOrganic Framework (Fe3O4@MOF@PPI) with
High Adsorption Capacity for Sustainable Wastewater Treatment,” ACS Appl. Mater. Interfaces, vol.
12, no. 22, pp. 25294–25303, 2020, doi: 10.1021/
acsami.0c04953.
[23] A. S. Varela, W. Ju, and P. Strasser, “Molecular Nitrogen–Carbon Catalysts, Solid Metal Organic
Framework Catalysts, and Solid Metal/NitrogenDoped Carbon (MNC) Catalysts for the Electrochemical CO2 Reduction,” Adv. Energy Mater.,
vol. 8, no. 30, p. 1703614, 2018, doi: 10.1002/
aenm.201703614.
[24] B. H. Moghadam, A. K. Haghi, S. Kasaei,
and M. Hasanzadeh, “Computational-based approach for predicting porosity of electrospun nanofiber mats using response surface methodology
and artificial neural network methods,” J. Macromol. Sci. Part B Phys., vol. 54, no. 11, 2015, doi:
10.1080/00222348.2015.1090654.
[25] B. Hadavi Moghadam, M. Hasanzadeh, and A.
K. Haghi, “On the contact angle of electrospun polyacrylonitrile nanofiber mat,” Bulg. Chem. Commun.,
vol. 45, no. 2, p. 23, 2013.
[26] B. Maddah, M. Soltaninezhad, K. Adib, and M.
Hasanzadeh, “Activated carbon nanofiber produced
from electrospun PAN nanofiber as a solid phase ex
  traction sorbent for the preconcentration of organophosphorus pesticides,” Sep. Sci. Technol., vol. 52,
no. 4, 2017, doi: 10.1080/01496395.2016.1221432.
[27] A. Abedi, M. Hasanzadeh, and L. Tayebi, “Conductive nanofibrous Chitosan/PEDOT:PSS tissue engineering scaffolds,” Mater. Chem. Phys., vol. 237,
p. 121882, Nov. 2019, doi: 10.1016/j.matchemphys.2019.121882.
[28] M. Liu, N. Cai, V. Chan, and F. Yu, “Development and applications of MOFs derivative onedimensional nanofibers via electrospinning a minireview,” Nanomaterials, vol. 9, no. 9, 2019, doi:
10.3390/nano9091306.
[29] C. Wang et al., “In Situ Growth of ZIF-8 on PAN
Fibrous Filters for Highly Efficient U(VI) Removal,”
ACS Appl. Mater. Interfaces, vol. 10, no. 28, pp.
24164–24171, 2018, doi: 10.1021/acsami.8b07826.
[30] C. Wang et al., “Metal-organic framework
one-dimensional fibers as efficient catalysts for activating peroxymonosulfate,” Chem. Eng. J., vol.
330, no. July, pp. 262–271, 2017, doi: 10.1016/j.
cej.2017.07.156.
[31] Y. Zhang, Y. Zhang, X. Wang, J. Yu, and B. Ding,
“Ultrahigh Metal-Organic Framework Loading and
Flexible Nanofibrous Membranes for Efficient CO2
Capture with Long-Term, Ultrastable Recyclability,” ACS Appl. Mater. Interfaces, vol. 10, no. 40, pp.
34802–34810, 2018, doi: 10.1021/acsami.8b14197.
[32] W. Koo, J. Jang, S. Qiao, G. Jha, R. M. Penner,
and I. Kim, “Hierarchical Metal-Organic Framework
Assembled Membrane Filter for Efficient Removal
of Particulate Matter,” ACS Appl. Mater. Interfaces,
vol. 10, no. 23, pp. 19957–19963, 2018, doi: 10.1021/
acsami.8b02986.
[33] X. Dai, X. Li, and X. Wang, “Morphology controlled porous poly ( lactic acid )/ zeolitic imidazolate framework-8 fi brous membranes with superior
PM2 . 5 capture capacity,” Chem. Eng. J., vol. 338,
no. November 2017, pp. 82–91, 2018, doi: 10.1016/j.
cej.2018.01.025.
[34] Y. Bian et al., “Effective removal of particles down to 15 nm using scalable metal-organic
framework-based nanofiber filters,” Appl. Mater.
Today, vol. 20, p. 100653, 2020, doi: 10.1016/j.
apmt.2020.100653.
[35] X. Han et al., “Reversible adsorption of nitrogen
dioxide within a robust porous metal – organic framework,” Nat. Mater., vol. 17, no. August, pp. 691–696,
2018, doi: 10.1038/s41563-018-0104-7.
[36] J. Lee, K. Lee, and J. Kim, “Fiber-based gas filter assembled via in-situ synthesis of ZIF-8 metal organic framework for an optimal adsorption of SO2 :
Experimental and theoretical approach,” ACS Appl.
Mater. Interfaces, vol. 13, no. 1, pp. 1620–1631, 2021.
[37] M. Aghajanzadeh, M. Zamani, and H. Molavi,
“Preparation of Metal – Organic Frameworks UiO-
66 for Adsorptive Removal of Methotrexate from
Aqueous Solution,” J. Inorg. Organomet. Polym. Mater., vol. 28, no. 1, pp. 177–186, 2018, doi: 10.1007/
s10904-017-0709-3.
[38] G. W. Peterson et al., “Tailoring the Pore Size
and Functionality of UiO-Type Metal-Organic
Frameworks for Optimal Nerve Agent Destruction,”
Inorg. Chem., vol. 54, no. 20, pp. 9684–9686, 2015,
doi: 10.1021/acs.inorgchem.5b01867.
[39] G. W. Peterson, J. J. Mahle, J. B. Decoste, W.
O. Gordon, and J. A. Rossin, “Extraordinary NO2
removal by the metal-organic framework UiO-66-
NH2,” Angew. Chemie - Int. Ed., vol. 55, no. 21, pp.
6235–6238, 2016, doi: 10.1002/anie.201601782.
[40] M. J. Katz et al., “A facile synthesis of UiO-66,
UiO-67 and their derivatives,” Chem. Commun., vol.
49, no. 82, p. 9449, 2013, doi: 10.1039/c3cc46105j.
[41] V. A. Online, C. Kong, and L. Chen, “Aminefunctionalized metal-organic frameworks: structure,
synthesis and applications,” RSC Adv., 2016, doi:
10.1039/C6RA01536K.
[42] G. W. Peterson, A. X. Lu, and T. H. Epps, III,
“Tuning the Morphology and Activity of Electrospun Polystyrene/ UiO-66-NH2 Metal-Organic
Framework Composites to Enhance Chemical Warfare Agent Removal,” ACS Appl. Mater. Interfaces,
vol. 9, no. 37, pp. 32248–32254, 2017, doi: 10.1021/
acsami.7b09209.
[43] A. M. Plonka et al., “In situ probes of capture
and decomposition of chemical warfare agent simulants by Zr-based metal organic frameworks,” J. Am.
Chem. Soc., vol. 139, no. 2, pp. 599–602, 2017, doi:
10.1021/jacs.6b11373.
[44] J. Zhao et al., “Ultra-Fast Degradation of Chemi cal Warfare Agents Using MOF–Nanofiber Kebabs,”
Angew. Chemie - Int. Ed., vol. 55, no. 42, pp. 13224–
13228, 2016, doi: 10.1002/anie.201606656.
[45] C. Liu et al., “General Deposition of Metal-Organic Frameworks on Highly Adaptive Organic-Inorganic Hybrid Electrospun Fibrous Substrates,” ACS
Appl. Mater. Interfaces, vol. 8, no. 4, pp. 2552–2561,
2016, doi: 10.1021/acsami.5b10078.
[46] M. Lee, G. P. Ojha, H. J. Oh, T. Kim, and H.
Y. Kim, “Copper//terbium dual metal organic frameworks incorporated side-by-side electrospun nanofibrous membrane: A novel tactics for an efficient
adsorption of particulate matter and luminescence
property,” J. Colloid Interface Sci., vol. 578, pp. 155–
163, 2020, doi: 10.1016/j.jcis.2020.05.113.
[47] S. Ma, M. Zhang, J. Nie, J. Tan, B. Yang, and
S. Song, “Design of double-component metal–organic framework air filters with PM2.5 capture, gas
adsorption and antibacterial capacities,” Carbohydr.
Polym., vol. 203, pp. 415–422, 2019, doi: 10.1016/j.
carbpol.2018.09.039.
[48] W. Pan et al., “Ultra uniform metal-organic
framework-5 loading along electrospun chitosan/
polyethylene oxide membrane fibers for efficient
PM2.5 removal,” J. Clean. Prod., p. 125270, 2020,
doi: 10.1016/j.jclepro.2020.125270.
[49] T. Li et al., “Polypropylene / Polyvinyl Alcohol /
Metal-Organic Framework-Based Melt-Blown Electrospun Composite Membranes for Highly Efficient
Filtration of PM 2.5,” Nanomaterials, vol. 8, p. 2025,
2020.
[50] M. Gao, L. Zeng, J. Nie, and G. Ma, “Polymermetal-organic framework core-shell framework
nanofibers: Via electrospinning and their gas adsorption activities,” RSC Adv., vol. 6, no. 9, pp. 7078–
7085, 2016, doi: 10.1039/c5ra23147g.
[51] K. Edwards, M. Khan, Wahiduzzaman, S. Absar,
S. Harp, and N. Takas, “Fabrication of Polyacrylonitrile Nanofiber Membranes functionalized with metal
organic framework for CO2 capturing,” in International Mechanical Engineering Congress and Exposition, 2017, pp. 1–6, doi: 10.1115/IMECE2015-50806.
[52] S. Cai et al., “In situ construction of metal-organic framework (MOF) UiO-66 film on Parylenepatterned resonant microcantilever for trace organophosphorus molecules detection,” Analyst, vol.
144, no. 12, pp. 3729–3735, 2019, doi: 10.1039/
c8an02508h.
[53] P. Jiamjirangkul, T. Inprasit, V. Intasanta, and A.
Pangon, “Metal organic framework-integrated chitosan/poly(vinyl alcohol) (PVA) nanofibrous membrane hybrids from green process for selective CO2
capture and filtration,” Chem. Eng. Sci., vol. 221, p.
115650, 2020, doi: 10.1016/j.ces.2020.115650.
[54] G. Sargazi, D. Afzali, A. Mostafavi, and H. Kazemian, “A novel composite derived from a metal
organic framework immobilized within electrospun
nanofibrous polymers: An efficient methane adsorbent,” Appl. Organomet. Chem., vol. 34, no. 3, pp.
1–12, 2020, doi: 10.1002/aoc.5448.
[55] A. X. Lu, A. M. Ploskonka, T. M. Tovar, G. W.
Peterson, and J. B. Decoste, “Direct Surface Growth
of UIO-66-NH2 on Polyacrylonitrile Nanofibers for
Efficient Toxic Chemical Removal,” Ind. Eng. Chem.
Res., vol. 56, no. 49, pp. 14502–14506, 2017, doi:
10.1021/acs.iecr.7b04202.
[56] A. X. Lu, M. McEntee, M. A. Browe, M. G.
Hall, J. B. Decoste, and G. W. Peterson, “MOFabric: Electrospun Nanofiber Mats from PVDF/UiO-
66-NH2 for Chemical Protection and Decontamination,” ACS Appl. Mater. Interfaces, vol. 9, no. 15, pp.
13632–13636, 2017, doi: 10.1021/acsami.7b01621