جداسازی آلاینده آلی (رنگزا) با استفاده زئولیت سدیم اصلاح سطح شده: ایزوترم و سینتیک رنگبری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیمی، دانشکده علوم، دانشگاه آزاد اسلامی واحد شهرقدس، تهران، ایران

2 کارشناس ارشد، گروه شیمی دانشگاه آزاد اسلامی واحد شهرقدس، تهران، ایران

amnc.2022.10.39.5

چکیده

در این تحقیق، زئولیت سنتز و با 3-آمینوپروپیل تری متوکسی سیلان اصلاح شد. مواد سنتز شده به وسیله آنالیزهای FT-IR، SEM وXRD شناسایی و برای جداسازی آلاینده آلی رنگزای قرمز مستقیم 80 (DR80) استفاده گردید. اثر عوامل مهم و مختلف مانند مقدار جاذب، غلظت ابتدایی آلاینده و pH مورد بررسی قرار گرفت. نتایج نشان داد که جاذب اصلاح شده نسبت به جاذب خام ظرفیت جذب بیشتری دارد. مقدار جذب رنگزا در مقادیر pH پایین تر زیاد است. درصد حذف رنگزای DR80 در شرایط بهینه به صورت کامل بود. افزایش مقدار جاذب و کاهش pH موجب افزایش درصد رنگبری می شود و افزایش غلظت آلاینده، موجب کاهش درصد حذف رنگزا در فرآیند است. مدل های ایزوترم لانگمویر، فروندلیش و تمپکین برای داده های آزمایشگاهی استفاده شد. داده های ایزوترم نشان داد که فرآیند جذب با مدل ایزوترم لانگمویر مطابقت دارد. همچنین، مدل های سینتیک شبه مرتبه اول، شبه مرتبه دوم و نفوذ درون ذره ای برای بررسی سینتیک جذب استفاده شد. جذب رنگزا از سینتیک شبه مرتبه دوم پیروی کرد. نتایج نشان داد که جاذب اصلاح شده می تواند به عنوان یک جاذب مناسب با ظرفیت جذب بالا برای رنگبری از محلول های آبی رنگی باشد.

کلیدواژه‌ها


 [1] N. Oke, S. Mohan, Development of nanoporous textile sludge
based adsorbent for the dye removal from industrial textile effluent,
Journal of Hazardous Materials, 422 (2022), 126864.
[2] M. Adel, M.A. Ahmed, A.A. Mohamed, Effective removal
of indigo carmine dye from wastewaters by adsorption onto
mesoporous magnesium ferrite nanoparticles, Environmental
Nanotechnology, Monitoring & Management, 16 (2021) 100550.
[3] D.D.E. Koyuncu, M. Okur, Investigation of dye removal ability
and reusability of green and sustainable silica and carbon-silica
hybrid aerogels prepared from paddy waste ash. Colloids and
Surfaces A: Physicochemical and Engineering Aspects. 628 (2021)
127370.
[4] M.A. Sidiqua, V.S. Priya, Removal of yellow dye using
composite binded adsorbent developed using natural clay and
activated carbon from sapindus seed, Biocatalysis and Agricultural
Biotechnology. 33 (2021) 101965.
[5] I.D. Dallabona, Á.L. Mathias, R.M.M. Jorge, A new green
floating photocatalyst with Brazilian bentonite into TiO2/alginate
beads for dye removal, Colloids and Surfaces A: Physicochemical
and Engineering Aspects, 627 (2021) 127159.
[6] M. M. S. Sanad, M. M. Farahat, M. A. Abdel Khalek, Onestep processing of low-cost and superb natural magnetic adsorbent:
kinetics and thermodynamics investigation for dye removal from
textile wastewater, Advanced Powder Technology, 32 (2021) 1573-
1583.
[7] O. Icin, C. Vakifahmetoglu, Dye removal by polymer derived
ceramic nanobeads, Ceramics International, 47 (2021) 27050-
27057.
[8] M.A. Khapre, S. Pandey, R.M. Jugade, Glutaraldehyde-crosslinked chitosan–alginate composite for organic dyes removal
from aqueous solutions, International Journal of Biological
Macromolecules, 190 (2021) 862-875.
[9] J.B. Rial, M.L. Ferreira, Challenges of dye removal treatments
based on IONzymes: Beyond heterogeneous Fenton, Journal of
Water Process Engineering, 41 (2021) 102065.
[10] W. Jiang, X. Zhou, Enzymatic preparation of oxidized
viscose fibers-based biosorbent modified with ε-polylysine for
dyes removal and microbial inactivation, International Journal of
Biological Macromolecules. 166 (2021) 509-520.
[11] K. Hendaoui, M. Trabelsi-Ayadi, F. Ayari, Optimization and
mechanisms analysis of indigo dye removal using continuous
electrocoagulation, Chinese Journal of Chemical Engineering, 29
(2021) 242-252.
[12] L. Munguti, F. Dejene, Effects of Zn:Ti molar ratios on the
morphological, optical and photocatalytic properties of ZnO-TiO2
nanocomposites for application in dye removal, Materials Science
in Semiconductor Processing, 128 (2021) 105786.
[13] Z. Yang, W. Shena, Q. Chen, W. Wang, Direct electrochemical
reduction and dyeing properties of CI Vat Yellow 1 using carbon
felt electrode, Dyes and Pigments, 184 (2021) 108835.
 
 [14] M. Behera, J. Nayak, S. Banerjee, S. Chakrabortty,
S.K.Tripathy, A review on the treatment of textile industry waste
effluents towards the development of efficient mitigation strategy:
An integrated system design approach, Journal of Environmental
Chemical Engineering, 9 (2021) 105277.
[15] C. Lavanya, J. Kusuma, R. Geetha Balakrishna, Pyrochlores:
oxygen-rich moieties as ceramic fillers in uplifting the antifouling
property and dye removal capacity of polymeric membranes,
Separation and Purification Technology. 272 (2021) 118946.
[16] G. Gnanasekaran, G. Arthanareeswaran Y.S. Mok, A high-flux
metal-organic framework membrane (PSF/MIL-100 (Fe)) for the
removal of microplastics adsorbing dye contaminants from textile
wastewater. Separation and Purification Technology. 277 (2021)
119655.
[17] S.M. Alardhi, T.M. Albayati, J.M. Alrubaye, A hybrid
adsorption membrane process for removal of dye from synthetic
and actual wastewater, Chemical Engineering and Processing -
Process Intensification, 157 (2020) 108113.
[18] I. Khouni, G. Louhichi, A. Ghrabi, Assessing the performances
of an aerobic membrane bioreactor for textile wastewater treatment:
Influence of dye mass loading rate and biomass concentration,
Process Safety and Environmental Protection. 135 (2020) 364-382.
[19] E.F. DiogoJanuário, T. BassoVidovix, N. de Camargo
Lim, B.R. Paixão, L.H.B.R. daSilva, N. CândidoHomem, R.
Bergamasco, A.M.S. Vieirac, Advanced graphene oxide-based
membranes as a potential alternative for dyes removal: A review.
Science of The Total Environment. 789 (2021) 147957.
[20] A. Prasannan, J. Udomsin, H. ChihTsai, C.F. Wang, Juin-Yih
Lai, Robust underwater superoleophobic membranes with bioinspired carrageenan/laponite multilayers for the effective removal
of emulsions, metal ions, and organic dyes from wastewater,
Chemical Engineering Journal. 391 (2020) 123585.
[21] B. Bethi, S.H. Sonawane, B.A. Bhanvase, S.S. Sonawane,
Textile Industry Wastewater Treatment by Cavitation Combined
with Fenton and Ceramic Nanofiltration Membrane. Chemical
Engineering and Processing - Process Intensification. 168 (2021)
108540.
[22] W.A.A. Mohamed, I.A. Ibrahem, A.M. El-Sayed, H.R. Galal,
H. Handal, H.A. Mousa, A.A. Labib, Zinc oxide quantum dots
for textile dyes and real industrial wastewater treatment: Solar
photocatalytic activity, photoluminescence properties and recycling
process, Advanced Powder Technology. 31 (2020) 2555-2565.
[23] O. Seifunnisha, J. Shanthi, Influence of Aloe vera and PEG on
the evaluation of photocatalytic degradation of MG dye under UV
light and visible light irradiation of ZnO nanomaterials. Optik, 248
(2021) 168064.
[24] A.S. Yusuff, L.T. Popoola, E.I. Aderibigbe, Solar photocatalytic
degradation of organic pollutants in textile industry wastewater by
ZnO/pumice composite photocatalyst, Journal of Environmental
Chemical Engineering 8 (2020) 103907.
[25] A. Yadav, P. Sharma, A.B. Panda, V.K. Shahi, Photocatalytic
TiO2 incorporated PVDF-co-HFP UV-cleaning mixed matrix
membranes for effective removal of dyes from synthetic wastewater
system via membrane distillation. Journal of Environmental
Chemical Engineering, 9 (2021) 105904.
[26] K. Ramesh, B.M. Gnanamangai, R. Mohanraj, Investigating
techno-economic feasibility of biologically pretreated textile
wastewater treatment by electrochemical oxidation process
towards zero sludge concept. Journal of Environmental Chemical
Engineering, 9 (2021) 106289.
[27] R. Shoukat, S.J. Khan, Y. Jamal, Hybrid anaerobic-aerobic
biological treatment for real textile wastewater, Journal of Water
Process Engineering. 29 (2019) 100804.
[28] H. Hayat, Q. Mahmood, A. Pervez, Z.A. Bhatti, S.A. Baig,
Comparative decolorization of dyes in textile wastewater using
biological and chemical treatment. Separation and Purification
Technology, 154 (2015) 149-153.
[29] É. Hansen, P.M. de Aquim, M. Gutterres, Current technologies
for post-tanning wastewater treatment: A review, Journal of
Environmental Management, 294 (2021) 113003.
[30] T. Salinas, I. Durruty, L. Arciniegas, G. Pasquevich, M.
Lanfranconi, I. Orsi, S. Bonanni, Design and testing of a pilot scale
magnetic separator for the treatment of textile dyeing wastewater.
Journal of environmental management, 218 (2018) 562-568.
[31] S.M. Lam, X.Z.D. Low, K.A. Wong, J.C. Sin, Sequencing
coagulation–photodegradation treatment of Malachite Green dye
and textile wastewater through ZnO micro/nanoflowers. Chemical
Engineering Communications, 205 (2018) 1-14.
[32] G. Crini, Non-conventional low-cost adsorbents for dye
removal: a review. Bioresource technology, 97 (2006) 1061-1085.
[33] N. Morin-Crini, S. Loiacono, V. Placet, G. Torri, C. Bradu,
M. Kostić, G. Crini, Hemp-based adsorbents for sequestration of
metals: a review. Environmental Chemistry Letters, 17 (2019)
393–408.
[34] N.M. Mahmoodi, M.H. Saffar-Dastgerdi, Zeolite nanoparticle
as a superior adsorbent with high capacity: synthesis, surface
modification and pollutant adsorption ability from wastewater,
Microchem. J. 145 (2019) 74–83.
[35] S.L. Hailu, B.U. Nair, M. Redi-Abshiro, I. Diaz, M. Tessema,
Preparation and characterization of cationic surfactant modified
zeolite adsorbent material for adsorption of organic and inorganic
industrial pollutants. Journal of Environmental Chemical
Engineering, 5 (2017) 3319-3329.
[36] Markandeya, S. P. Shukla, N. Dhiman, D. Mohan, G.C. Kisku,
S. Roy, An efficient removal of disperse dye from wastewater
using zeolite synthesized from cenospheres. Journal of Hazardous,
Toxic, and Radioactive Waste, 21 (2017) 04017017.
[37] A.R. Loiola, J.C.R.A. Andrade, J.M. Sasaki, L.R.D. da Silva,
Structural analysis of zeolite NaA synthesized by a cost-effective
hydrothermal method using kaolin and its use as water softener, J.
Colloid Interface Sci. 367 (2012) 502–508.
[38] N. Sapawe, A.A. Jalil, S. Triwahyono, M.I.A. Shah, R.
Jusoh, N.F.M. Salleh, B.H. Hameed, A.H. Karim, Cost-effective
microwave rapid synthesis of zeolite NaA for removal of methylene
  blue, Chem. Eng. J. 229 (2013) 388–398.
[39] B.K. Tiwari, K. Muthukumarappan, C.P.O.’ Donnell, P.J.
Cullen, Modelling colour degradation of orange juice by ozone
treatment using response surface methodology, J. Food Eng. 88
(2008) 553–560.
[40] Y. Zhao, B. Zhang, X. Zhang, J. Wang, J. Liu, R. Chen,
Preparation of highly ordered cubic NaA zeolite from halloysite
mineral for adsorption of ammonium ions, J. Hazard. Mater. 178
(2010) 658–664.
[41] W. Konicki, I. Pełech, E. Mijowska, I. Jasińska, Adsorption
of anionic dye Direct Red 23 onto magnetic multi-walled carbon
nanotubes-Fe3C nanocomposite: kinetics, equilibrium and
thermodynamics, Chem. Eng. J. 210 (2012) 87–95.
[42] P.S. Thue, A.C. Sophia, E.C. Lima, A.G.N. Wamba, W.S. de
Alencar, G.S. dos Reis, F.S. Rodembusch, S.L.P. Dias, Synthesis
and characterization of a novel organicinorganic hybrid clay
adsorbent for the removal of acid red 1 and acid green 25 from
aqueous solutions, J. Clean. Prod. 171 (2018) 30–44.
[43] S.M. Lee, N. Xu, J.R. Grace, A. Li, C.J. Lim, S.S. Kim, F.
Fotovat, A. Schaadt, R.J. White, Structure, stability and permeation
properties of NaA zeolite membranes for H2O/H2and CH3OH/
H2separations, J. Eur. Ceram. Soc. 38 (2018) 211–219.
[44] M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its
removal from aqueous solution by adsorption: a review. Advances
in colloid and interface science, 209 (2014) 172-184.
[45] J. He, Y. Zhang, X. Zhang, Y. Huang, Highly efficient
Fenton and enzyme-mimetic activities of NH2-MIL-88B(Fe)
metal organic framework for methylene blue degradation. Sci Rep
8 (2018) 1–8.
[46] I. Humelnicu, A. Băiceanu, M.E. Ignat, V. Dulman, The
removal of Basic Blue 41 textile dye from aqueous solution by
adsorption onto natural zeolitic tuff: Kinetics and thermodynamics.
Process Safety and Environmental Protection, 105 (2017) 274-287.
[47] D. Karadag, E. Akgul, S. Tok, F. Erturk, M. A. Kaya, M.Turan,
Basic and reactive dye removal using natural and modified zeolites.
Journal of Chemical & Engineering Data, 52 (2007) 2436-2441.
[48] B. Armaǧan, O. Özdemir, M. Turan, M. S. Celik, The removal
of reactive azo dyes by natural and modified zeolites. Journal of
Chemical Technology & Biotechnology: International Research in
Process, Environmental & Clean Technology, 78 (2003) 725-732.
[49] E. Alver, A.Ü. Metin, Anionic dye removal from aqueous
solutions using modified zeolite: Adsorption kinetics and isotherm
studies. Chemical Engineering Journal, 200 (2012) 59-67.
[50] N.M. Mahmoodi, M. Banijamali, B. Noroozi, Surface
modification and ternary system dye removal ability of manganese
ferrite nanoparticle. Fibers and Polymers, 15 (2014) 1616-1626.
[51] S., Liu, Y., Ding, P., Li, K., Diao, X., Tan, F., Lei, Z.Huang,
Adsorption of the anionic dye Congo red from aqueous solution onto
natural zeolites modified with N, N-dimethyl dehydroabietylamine
oxide. Chemical Engineering Journal, 248 (2014) 135-144.
[52] A. M. Aljeboree, A. N. Alshirifi, A. F. Alkaim, Kinetics and
equilibrium study for the adsorption of textile dyes on coconut
shell activated carbon. Arabian journal of chemistry, 10 (2017)
S3381-S3393.
[53] S. Wang, H. Li, L. Xu, Application of zeolite MCM-22
for basic dye removal from wastewater. Journal of colloid and
interface science, 295 (2006) 71-78.
[54] A. Djafer, L. Djafer, B. Maimoun, A. Iddou, S. Kouadri
Mostefai, A. Ayral, Reuse of waste activated sludge for textile
dyeing wastewater treatment by biosorption: performance
optimization and comparison. Water and Environment Journal, 31
(2017) 105-112.